4 research outputs found

    Plasmodesmata: Channels for Viruses on the Move

    No full text
    The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking

    Plant Epigenetic Mechanisms in Response to Biotic Stress

    No full text
    The environment changes faster than the ability of genetic recombination to generate natural genetic diversity. In this context, epigenetic regulation of gene expression has the potential to provide organisms with an alternative mechanism for phenotypic variation by controlling the extent of plasticity that can be achieved in response to environmental changes. There is now substantial evidence suggesting roles for epigenetic regulation of several different aspects of the plant response to biotic stress. At the basic level of gene expression, posttranscriptional gene silencing mediated by small RNAs and chromatin remodelling controlling transcriptional gene silencing are essential for the induced resistance responses activated during pest and pathogen attack. Beyond this, there is also evidence that histone modifications and DNA methylation are associated with immune memory, or defence priming, such as systemic acquired resistance (SAR). In addition, recent evidence indicates that epigenetic modifications can also generate longer-term defence priming responses that can be inherited across generations. In this chapter, we will discuss the roles of epigenetics in these different modes of biotic stress resistance, and suggest ways in which we may in the future be able to exploit epigenetic systems for crop protection

    Halbleiter

    No full text
    corecore