72 research outputs found

    The Female Threat.

    Get PDF

    Dopamine and inhibitory action control: evidence from spontaneous eye blink rates

    Get PDF
    The inhibitory control of actions has been claimed to rely on dopaminergic pathways. Given that this hypothesis is mainly based on patient and drug studies, some authors have questioned its validity and suggested that beneficial effects of dopaminergic stimulants on response inhibition may be limited to cases of suboptimal inhibitory functioning. We present evidence that, in carefully selected healthy adults, spontaneous eyeblink rate, a marker of central dopaminergic functioning, reliably predicts the efficiency in inhibiting unwanted action tendencies in a stop-signal task. These findings support the assumption of a modulatory role for dopamine in inhibitory action control

    Will emergency and surgical patients participate in and complete alcohol interventions? A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the everyday surgical life, staff may experience that patients with Alcohol Use Disorders (AUDs) seem reluctant to participate in alcohol intervention programs. The objective was therefore to assess acceptance of screening and intervention as well as adherence to the intervention program among emergency department (ED) and surgical patients with AUDs.</p> <p>Methods</p> <p>A systematic literature search was followed by extraction of acceptance and adherence rates in ED and surgical patients. Numbers needed to screen (NNS) were calculated. Subgroup analyses were carried out based on different study characteristics.</p> <p>Results</p> <p>The literature search revealed 33 relevant studies. Of these, 31 were randomized trials, 28 were conducted in EDs and 31 evaluated the effect of brief alcohol intervention. Follow-up was mainly conducted after six and/or twelve months.</p> <p>Four in five ED patients accepted alcohol screening and two in three accepted participation in intervention. In surgical patients, two in three accepted screening and the intervention acceptance rate was almost 100%. The adherence rate was above 60% for up to twelve months in both ED and surgical patients. The NNS to identify one eligible AUD patient and to get one eligible patient to accept participation in alcohol intervention varied from a few up to 70 patients.</p> <p>The rates did not differ between randomized and non-randomized trials, brief and intensive interventions or validated and self-reported alcohol consumption. Adherence rates were not affected by patients' group allocation and type of follow-up.</p> <p>Conclusions</p> <p>Most emergency and surgical patients with AUD accept participation in alcohol screening and interventions and complete the intervention program.</p

    Involvment of Cytosolic and Mitochondrial GSK-3β in Mitochondrial Dysfunction and Neuronal Cell Death of MPTP/MPP+-Treated Neurons

    Get PDF
    Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease

    CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?

    Get PDF
    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue

    Biological functions of selenium and its potential influence on Parkinson's disease

    Full text link
    corecore