335 research outputs found

    Contribution to the cytotaxonomical knowledge of four species of Serapias L. (Orchidaceae)

    Get PDF
    Abstract Serapias L. includes about thirty entities, but just one (S. lingua) is presently known as polyploid. In this paper we reported, for the first time, the chromosome number of S. gregaria, S. olbia and S. strictiflora, three endemic species of Southwest Europe, that resulted tetraploid with 2n = 72 chromosomes as S. lingua. The strong affinity between these four species revealed by molecular phylogenetic studies based on cpDNA is now supported by their common tetraploid level, so that polyploidy can be considered for this genus a possible mechanism of speciation. The karyotype of another endemic species of Iberian Peninsula, S. perezchiscanoi, was carried out in order to add new karyological data on Serapias orchids

    A Bayesian Networks Approach to Operational Risk

    Full text link
    A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank using only internal loss data, and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters. The algorithm has been validated on synthetic time series. It should be stressed that the practical implementation of the proposed algorithm has a small impact on the organizational structure of a bank and requires an investment in human resources limited to the computational area

    Sloshing effects in innovative nuclear reactor pressure vessels

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.The reactor pressure vessel is a cylindrical shell structure which contains a rather large amount of liquid and many structures. Therefore, the fluid-structure interaction problems and the free oscillation of an incompressible liquid have attracted the attention because during a postulated earthquake (e.g. Design Basis Earthquake) the primary coolant surrounding the internals is accelerated and a significant fluid-structure hydrodynamic interaction is induced: in particular, the so called coolant “sloshing” influence on the stress level in the RPV. This effect is mainly important in the case of liquid metal primary coolant case and its coupling with the reactor vessel and its internals are considered. Numerical modelling proved to be very useful for the foreseen structures analysis because neither linear nor second-order potential theory is directly applicable when steep waves are present and high-order effects are significant. In what follow numerical results are presented and discussed highlighting the importance of the fluid-structure interaction effects in terms of stress intensity and were also used in order to obtain a preliminary validation of the numerical approach/models in comparison with experimental data.cs201

    Functional magnetic resonance imaging in the evaluation of the elastic properties of ascending aortic aneurysm

    Get PDF
    Objective: To evaluate the aortic wall elasticity using the maximal rate of systolic distension (MRSD) and maximal rate of diastolic recoil (MRDR) and their correlation with the aortic size index (ASI). Methods: Forty-eight patients with thoracic aortic aneurysm were enrolled in this study. A standard magnetic resonance imaging (MRI) protocol was used to calculate MRSD and MRDR. Both MRSD and MRDR were expressed as percentile of maximal area/10-3 sec. ASI (maximal aortic diameter/body surface area) was calculated. A correlation between MRSD, MRDR, ASI, and the patient’s age was performed using regression plot. Results: A significant correlation between MRSD (t=-4,36; r2=0.29; P≤0.0001), MRDR (t=3.92; r2=0.25; P=0.0003), and ASI (25±4.33 mm/m2; range 15,48-35,14 mm/m2) is observed. As ASI increases, aortic MRSD and MRDR decrease. Such inverse correlation between MRSD, MRDR, and ASI indicates increased stiffness of the ascending aorta. A significant correlation between the patient’s age and the decrease in MRSD and MRDR is observed. Conclusion: MRSD and MRDR are significantly correlated with ASI and the patient’s age. They seem to describe properly the increasing stiffness of aortas. These two new indexes provide a promising, accessible, and reproducible approach to evaluate the

    Accuracy of right atrial pressure estimation using a multi-parameter approach derived from inferior vena cava semi-automated edge-tracking echocardiography: a pilot study in patients with cardiovascular disorders

    Get PDF
    The echocardiographic estimation of right atrial pressure (RAP) is based on the size and inspiratory collapse of the inferior vena cava (IVC). However, this method has proven to have limits of reliability. The aim of this study is to assess feasibility and accuracy of a new semi-automated approach to estimate RAP. Standard acquired echocardiographic images were processed with a semi-automated technique. Indexes related to the collapsibility of the vessel during inspiration (Caval Index, CI) and new indexes of pulsatility, obtained considering only the stimulation due to either respiration (Respiratory Caval Index, RCI) or heartbeats (Cardiac Caval Index, CCI) were derived. Binary Tree Models (BTM) were then developed to estimate either 3 or 5 RAP classes (BTM3 and BTM5) using indexes estimated by the semi-automated technique. These BTMs were compared with two standard estimation (SE) echocardiographic methods, indicated as A and B, distinguishing among 3 and 5 RAP classes, respectively. Direct RAP measurements obtained during a right heart catheterization (RHC) were used as reference. 62 consecutive \u2018all-comers\u2019 patients that had a RHC were enrolled; 13 patients were excluded for technical reasons. Therefore 49 patients were included in this study (mean age 62.2\ua0\ub1\ua015.2\ua0years, 75.5% pulmonary hypertension, 34.7% severe left ventricular dysfunction and 51% right ventricular dysfunction). The SE methods showed poor accuracy for RAP estimation (method A: misclassification error, ME\ua0=\ua051%, R2\ua0=\ua00.22; method B: ME\ua0=\ua069%, R2\ua0=\ua00.26). Instead, the new semi-automated methods BTM3 and BTM5 have higher accuracy (ME\ua0=\ua014%, R2\ua0=\ua00.47 and ME\ua0=\ua022%, R2\ua0=\ua00.61, respectively). In conclusion, a multi-parametric approach using IVC indexes extracted by the semi-automated approach is a promising tool for a more accurate estimation of RAP
    • …
    corecore