27 research outputs found

    The sensitivity and specificity of the conventional symptoms and signs in making a diagnosis of acute appendicitis

    Get PDF
    Introduction: Simple appendicitis can progress to perforation, which is associated with a much higher morbidity and mortality. So, surgeons have therefore been inclined to operate when the diagnosis is probable rather than wait until it is certain. Objective: This study is designed to evaluate the sensitivity and specificity of clinical examination in the diagnosis of acute appendicitis.Methods: The study included 866 patients of acute appendicitis who had undergone appendicectomy with preoperative diagnosis of acute appendicitis. They were analyzed retrospectively. The parameters evaluated were age/gender, clinical presentation (signs and symptoms) and total white blood cell counts. The operative findings were recorded and the inflammation of the appendix was graded into normal, acutely inflamed and gangrenous.Results: Clinical diagnosis was made correctly in 807 (93.2%) of the patients. White blood cells count ranged from 3.70 to 45.30 /mm3 (mean 17.5353 /mm3). It wa

    Language development after cochlear implantation: an epigenetic model

    Get PDF
    Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience

    Influence of Human and Bacterial Enzymes on Resin Restorations:A Review

    No full text
    BACKGROUND: Esthetic satisfaction has been a prime concern for patients. This has led to a surge in the development of esthetic restorations and dental composites in the field of restorative dentistry over the past decade. Resins are the most preferred restorative material. However, their failure rate was observed to be high.AIM: This review is aimed for clinician, discussing the influence of human and bacterial enzymes on resin restorations.REVIEW RESULTS: Composite restoration failure is multifactorial with an interplay of mechanical functions such as masticatory forces and abrasion with biological factors such as host modulated and bacterial enzymes. Salivary esterases and bacterial esterases act on the ester-link bond of resin restoration to form byproducts of methacrylic acid and Bis-hydroxy-propoxy-phenyl-propane. Salivary enzymes form microgaps between the resin-tooth interface and provide a suitable environment for bacterial growth. Bacteria colonize the resin-tooth interface to weaken the resin bond strength. The presence of bacteria draws neutrophils into the hybrid layer. The activation and degranulation of neutrophils leads to enzyme secretions that act on bacteria. However, this can also have adverse effects on resin restoration. Acids prompt the activation of matrix metalloproteinases (MMPs). Proteinases secreted by MMPs uncoil the collagen fibrils of the dentin matrix and degrade tooth structure. The salivary esterases, bacterial esterases, neutrophils, and MMPs work synergistically to degrade dental resin material, resin-tooth interface, and dentin. This causes failure of dental resin restorations and secondary caries formation.CONCLUSION: Biological degradation of resin restorations is inevitable irrespective of the material and techniques used. Salivary esterases such as cholesterol esterase and pseudocholinesterase and cariogenic bacterial esterase can degrade dental resin, weakening the hybrid layer at the resin-tooth interface, affecting the bond strength, and causing failure. Ester-free resin and incorporation of antimicrobial materials, esterase, and MMP inhibitors are strategies that could ameliorate degradation of the restoration.</p
    corecore