2 research outputs found

    Cost-Effectiveness of Intermittent Preventive Treatment of Malaria in Pregnancy in Southern Mozambique

    Get PDF
    BACKGROUND: Malaria in pregnancy is a public health problem for endemic countries. Economic evaluations of malaria preventive strategies in pregnancy are needed to guide health policies. METHODS AND FINDINGS: This analysis was carried out in the context of a trial of malaria intermittent preventive treatment in pregnancy with sulphadoxine-pyrimethamine (IPTp-SP), where both intervention groups received an insecticide treated net through the antenatal clinic (ANC) in Mozambique. The cost-effectiveness of IPTp-SP on maternal clinical malaria and neonatal survival was estimated. Correlation and threshold analyses were undertaken to assess the main factors affecting the economic outcomes and the cut-off values beyond which the intervention is no longer cost-effective. In 2007 US,theincrementalcost−effectivenessratio(ICER)formaternalmalariawas41.46US, the incremental cost-effectiveness ratio (ICER) for maternal malaria was 41.46 US (95% CI 20.5, 96.7) per disability-adjusted life-year (DALY) averted. The ICER per DALY averted due to the reduction in neonatal mortality was 1.08 US(95 (95% CI 0.43, 3.48). The ICER including both the effect on the mother and on the newborn was 1.02 US (95% CI 0.42, 3.21) per DALY averted. Efficacy was the main factor affecting the economic evaluation of IPTp-SP. The intervention remained cost-effective with an increase in drug cost per dose up to 11 times in the case of maternal malaria and 183 times in the case of neonatal mortality. CONCLUSIONS: IPTp-SP was highly cost-effective for both prevention of maternal malaria and reduction of neonatal mortality in Mozambique. These findings are likely to hold for other settings where IPTp-SP is implemented through ANC visits. The intervention remained cost-effective even with a significant increase in drug and other intervention costs. Improvements in the protective efficacy of the intervention would increase its cost-effectiveness. Provision of IPTp with a more effective, although more expensive drug than SP may still remain a cost-effective public health measure to prevent malaria in pregnancy. TRIAL REGISTRATION: ClinicalTrials.gov NCT00209781

    Artificial Photosynthesis: An Approach for a Sustainable Future

    No full text
    International audienceThe energy needs of humankind has experimented a sharp increase since the beginning of the Anthropocene due to a large increase in population and the evolution of our society’s lifestyle. Recent projections suggest that it will likely lead to a major crisis due to environmental issues associated with the increasing use of fossil fuel as major energy source, as well as due to a rapid dwindling of the classical and easily accessible fossil-fuels stocks. These issues require a quick response if the lifestyle adopted by our societies shall be sustained. Several solutions have been envisioned to tackle these problems, of which, the development of Artificial Photosynthetic systems is one of the most appealing. The field of artificial photosynthesis takes Nature itself as a source of inspiration, to propose alternative energy harvesting and storage strategies. This field of research not only aims at mimicking the main processes that permitted photosynthetic organisms to thrive and become the most successful autotrophs on earth, but as well at improving and optimizing these processes using synthetic materials. In this chapter, the underlying mechanisms that enable photosynthetic organisms to convert (and store) solar energy into a directly usable chemical energy will be discussed. Then it will be explained how these concepts can be extended to artificial systems and ultimately used to our own benefit
    corecore