2,274 research outputs found

    Compiling Magnetosheath Statistical Data Sets Under Specific Solar Wind Conditions: Lessons Learnt From the Dayside Kinetic Southward IMF GEM Challenge

    Get PDF
    The Geospace Environmental Modelling (GEM) community offers a framework for collaborations between modelers, observers, and theoreticians in the form of regular challenges. In many cases, these challenges involve model-data comparisons to provide wider context to observations or validate model results. To perform meaningful comparisons, a statistical approach is often adopted, which requires the extraction of a large number of measurements from a specific region. However, in complex regions such as the magnetosheath, compiling these data can be difficult. Here, we provide the statistical context of compiling statistical data for the southward IMF GEM challenge initiated by the "Dayside Kinetic Processes in Global Solar Wind-Magnetosphere Interaction" focus group. It is shown that matching very specific upstream conditions can severely impact the statistical data if limits are imposed on several solar wind parameters. We suggest that future studies that wish to compare simulations and/or single events to statistical data should carefully consider at an early stage the availability of data in context with the upstream criteria. We also demonstrate the importance of how specific IMF conditions are defined, the chosen spacecraft, the region of interest, and how regions are identified automatically. The lessons learnt in this study are of wide context to many future studies as well as GEM challenges. The results also highlight the issue where a global statistical perspective has to be balanced with its relevance to more-extreme, less-frequent individual events, which is typically the case in the field of space weather

    Schottky Diodes on ZnO Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

    Get PDF
    Enhancement of the properties of zinc oxide (ZnO)-based Schottky diodes has been explored using a combination of plasma-enhanced atomic layer deposition (PE-ALD) ZnO thin films and silver oxide Schottky contacts deposited by reactive radio-frequency sputtering. The electrical properties of the ZnO thin films were systematically tuned by varying the deposition temperature and oxygen plasma time during PE-ALD to optimize the performance of the diode. Low temperature (80 °C) coupled with relatively long oxygen plasma time (>30 s) PE-ALD is the key to produce ZnO films with net doping concentration lower than 10 17 cm -3 . Under the optimal deposition conditions identified, the diode shows an ideality factor of 1.33, an effective barrier height of 0.80 eV, and an ON/OFF ratio of 3.11 × 10 5

    Temperature stability of thin film refractory plasmonic materials

    Get PDF
    Materials such as W, TiN, and SrRuO3 (SRO) have been suggested as promising alternatives to Au and Ag in plasmonic applications owing to their stability at high operational temperatures. However, investigation of the reproducibility of the optical properties after thermal cycling between room and elevated temperatures is so far lacking. Here, thin films of W, Mo, Ti, TiN, TiON, Ag, Au, SrRuO3 and SrNbO3 are investigated to assess their viability for robust refractory plasmonic applications. These results are further compared to the performance of SrMoO3 reported in literature. Films ranging in thickness from 50 to 105 nm are deposited on MgO, SrTiO3 and Si substrates by e-beam evaporation, RF magnetron sputtering and pulsed laser deposition, prior to characterisation by means of AFM, XRD, spectroscopic ellipsometry, and DC resistivity. Measurements are conducted before and after annealing in air at temperatures ranging from 300 to 1000° C for one hour, to establish the maximum cycling temperature and potential longevity at elevated temperatures for each material. It is found that SrRuO3 retains metallic behaviour after annealing at 800° C, while SrNbO3 undergoes a phase transition resulting in a loss of metallic behaviour after annealing at 400° C. Importantly, the optical properties of TiN and TiON are degraded as a result of oxidation and show a loss of metallic behaviour after annealing at 500° C, while the same is not observed in Au until annealing at 600° C. Nevertheless, both TiN and TiON may be better suited than Au or SRO for high temperature applications operating under vacuum conditions

    Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B <em>Streptococcus</em>

    Get PDF
    ABSTRACT: Several bacterial pathogens decorate their surfaces with sialic acid (Sia) residues within cell wall components or capsular exopolysaccharides. Sialic acid expression can promote bacterial virulence by blocking complement activation or by engagement of inhibitory sialic acid-binding immunoglobulin-like lectins (Siglecs) on host leukocytes. Expressed at high levels on splenic and lymph node macrophages, sialoadhesin (Sn) is a unique Siglec with an elongated structure that lacks intracellular signaling motifs. Sialoadhesin allows macrophage to engage certain sialylated pathogens and stimulate inflammatory responses, but the in vivo significance of sialoadhesin in infection has not been shown. We demonstrate that macrophages phagocytose the sialylated pathogen group B Streptococcus (GBS) and increase bactericidal activity via sialoadhesin-sialic-acid-mediated recognition. Sialoadhesin expression on marginal zone metallophillic macrophages in the spleen trapped circulating GBS and restricted the spread of the GBS to distant organs, reducing mortality. Specific IgM antibody responses to GBS challenge were also impaired in sialoadhesin-deficient mice. Thus, sialoadhesin represents a key bridge to orchestrate innate and adaptive immune defenses against invasive sialylated bacterial pathogens. KEY MESSAGE: Sialoadhesin is critical for macrophages to phagocytose and clear GBS. Increased GBS organ dissemination in the sialoadhesin-deficient mice. Reduced anti-GBS IgM production in the sialoadhesin-deficient mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00109-014-1157-y) contains supplementary material, which is available to authorized users

    Expression of a Serine Protease Gene prC Is Up-Regulated by Oxidative Stress in the Fungus Clonostachys rosea: Implications for Fungal Survival

    Get PDF
    BACKGROUND: Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrated that the expression of prC was up-regulated by oxidants (H(2)O(2) or menadione) and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS) induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD) degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. CONCLUSIONS/SIGNIFICANCE: These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel strategy for fungi to adapt to environmental stress

    Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK

    Get PDF
    Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg)7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy

    Maspin expression in gastrointestinal stromal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the role of maspin expression in the progression of gastrointestinal stromal tumors, and its value as a prognostic indicator.</p> <p>Methods</p> <p>In the study 54 patients with GIST diagnosis were included in Uludag University of Faculty of Medicine, Department of Pathology between 1997-2007. The expression of maspin in 54 cases of gastrointestinal stromal tumor was detected by immunohistochemistry and compared with the clinicopathologic tumor parameters.</p> <p>Results</p> <p>The positive expression rates for maspin in the GISTs were 66,6% (36 of 54 cases). Maspin overexpression was detected in 9 of 29 high risk tumors (31%) and was significantly higher in very low/low (78.6%) and intermediate-risk tumors (63.6%) than high-risk tumors.</p> <p>Conclusions</p> <p>Maspin expression might be an important factor in tumor progression and patient prognosis in GIST. In the future, larger series may be studied to examine the prognostic significance of maspin in GISTs and, of course, maspin expression may be studied in different mesenchymal tumors.</p
    corecore