10 research outputs found

    Universality of pseudogap and emergent order in lightly doped Mott insulators

    Get PDF
    It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.Comment: This version contains the supplementary information and small updates on figures and tex

    Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy

    No full text
    \u3cp\u3eWe present a comprehensive scanning tunneling microscopy and spectroscopy study of individual Si dopants in GaAs. We explain all the spectroscopic peaks and their voltage dependence in the band gap and in the conduction band. We observe both the filled and empty donor state. Donors close to the surface, which have an enhanced binding energy, show a second ionization ring, corresponding to the negatively charged donor D\u3csup\u3e-\u3c/sup\u3e. The observation of all predicted features at the expected spectral position and with the expected voltage-distance dependence confirms their correct identification and the semiquantitative analyses of their energetic positions.\u3c/p\u3

    Scanning tunneling microscopy reveals LiMnAs is a room temperature anti-ferromagnetic semiconductor

    Get PDF
    We performed scanning tunneling microscopy and spectroscopy on a LiMnAs(001) thin film epitaxially grown on an InAs(001) substrate by molecular beam epitaxy. While the in situ cleavage exposed only the InAs(110) non-polar planes, the cleavage continued into the LiMnAs thin layer across several facets. We combined both topography and current mappings to confirm that the facets correspond to LiMnAs. By spectroscopy we show that LiMnAs has a band gap. The band gap evidenced in this study, combined with the known Ne´el temperature well above room temperature, confirms that LiMnAs is a promising candidate for exploring the concepts of high temperature semiconductor spintronics based on antiferromagnets

    Enhanced binding energy of manganese acceptors close to the GaAs(110) surface

    No full text
    Scanning tunneling spectroscopy was performed at low temperature on buried manganese (Mn) acceptors below the (110) surface of gallium arsenide. The main Mn-induced features consisted of a number of dI/dV peaks in the band gap of the host material. The peaks in the band gap are followed by negative differential conductivity, which can be understood in terms of an energy-filter mechanism. The spectroscopic features detected on the Mn atoms clearly depend on the depth of the addressed acceptor below the surface. Combining the depth dependence of the positions of the Mn-induced peaks and using the energy-filter model to explain the negative resistance qualitatively proves that the binding energy of the hole bound to the Mn atom increases for Mn acceptors closer to the surfac

    Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs

    No full text
    Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Ne\'el temperature. Combined with our demonstration of room-temperature exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.Comment: 16 pages, 5 figures, Published in Nature Communications (2013
    corecore