44 research outputs found

    Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult

    Get PDF
    The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders

    Vacuolar myopathy in a dog resembling human sporadic inclusion body myositis

    Get PDF
    Sporadic inclusion body myositis (sIBM) is the most common myopathy in people over the age of 50 years. While immune-mediated inflammatory myopathies are well documented in dogs, sIBM has not been described. An 11-year-old dog with chronic and progressive neuromuscular dysfunction was evaluated for evidence of sIBM using current pathologic, immunohistochemical and electron microscopic diagnostic criteria. Vacuoles and congophilic intracellular inclusions were identified in cryostat sections of multiple muscle biopsies and immunostained with antibodies against amyloid-β peptide, amyloid-β precursor protein, and proteosome 20S of the ubiquitin–proteosome system. Cellular infiltration and increased expression of MHC Class I antigen were observed. Cytoplasmic filamentous inclusions, membranous structures, and myeloid bodies were identified ultrastructurally. These observations constitute the first evidence that both the inflammatory and degenerative features of human sIBM can occur in a non-human species

    Ultrastructure of the Endoneurium

    No full text

    The ER-Bound RING Finger Protein 5 (RNF5/RMA1) Causes Degenerative Myopathy inTransgenic Mice and Is Deregulated in Inclusion Body Myositis.

    No full text
    Growing evidence supports the importance of ubiquitin ligases in the pathogenesis of muscular disorders, although underlying mechanisms remain largely elusive. Here we show that the expression of RNF5 (aka RMA1), an ER-anchored RING finger E3 ligase implicated in muscle organization and in recognition and processing of malfolded proteins, is elevated and mislocalized to cytoplasmic aggregates in biopsies from patients suffering from sporadic-Inclusion Body Myositis (sIBM). Consistent with these findings, an animal model for hereditary IBM (hIBM), but not their control littermates, revealed deregulated expression of RNF5. Further studies for the role of RNF5 in the pathogenesis of s-IBM and more generally in muscle physiology were performed using RNF5 transgenic and KO animals. Transgenic mice carrying inducible expression of RNF5, under control of beta-actin or muscle specific promoter, exhibit an early onset of muscle wasting, muscle degeneration and extensive fiber regeneration. Prolonged expression of RNF5 in the muscle also results in the formation of fibers containing congophilic material, blue-rimmed vacuoles and inclusion bodies. These phenotypes were associated with altered expression and activity of ER chaperones, characteristic of myodegenerative diseases such as s-IBM. Conversely, muscle regeneration and induction of ER stress markers were delayed in RNF5 KO mice subjected to cardiotoxin treatment. While supporting a role for RNF5 Tg mice as model for s-IBM, our study also establishes the importance of RNF5 in muscle physiology and its deregulation in ER stress associated muscular disorders
    corecore