454 research outputs found

    Endothelin@25 - new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12.

    Get PDF
    This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/bph.12874Since the discovery of endothelin (ET)-1 in 1988, the main components of the signalling pathway have become established, comprising three structurally similar endogenous 21-amino acid peptides, ET-1, ET-2 and ET-3, that activate two GPCRs, ETA and ETB . Our aim in this review is to highlight the recent progress in ET research. The ET-like domain peptide, corresponding to prepro-ET-193-166 , has been proposed to be co-synthesized and released with ET-1, to modulate the actions of the peptide. ET-1 remains the most potent vasoconstrictor in the human cardiovascular system with a particularly long-lasting action. To date, the major therapeutic strategy to block the unwanted actions of ET in disease, principally in pulmonary arterial hypertension, has been to use antagonists that are selective for the ETA receptor (ambrisentan) or that block both receptor subtypes (bosentan). Macitentan represents the next generation of antagonists, being more potent than bosentan, with longer receptor occupancy and it is converted to an active metabolite; properties contributing to greater pharmacodynamic and pharmacokinetic efficacy. A second strategy is now being more widely tested in clinical trials and uses combined inhibitors of ET-converting enzyme and neutral endopeptidase such as SLV306 (daglutril). A third strategy based on activating the ETB receptor, has led to the renaissance of the modified peptide agonist IRL1620 as a clinical candidate in delivering anti-tumour drugs and as a pharmacological tool to investigate experimental pathophysiological conditions. Finally, we discuss biased signalling, epigenetic regulation and targeting with monoclonal antibodies as prospective new areas for ET research.We thank the British Heart Foundation (PS/02/001, PG/05/127/19872, FS/12/64/130001) Wellcome Trust Programme in Metabolic and Cardiovascular Disease 096822/Z/11/Z, NIHR Cambridge Biomedical Research Centre and the Pulmonary Hypertension Association UK

    Motilin receptor in GtoPdb v.2023.1

    Get PDF
    Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. There are significant species differences in the structure of motilin and its receptor, and in the functions of motilin. In humans and large mammals such as dog, activation of these receptors by motilin released from endocrine cells in the duodenal mucosa during fasting, induces propulsive phase III movements. This activity is associated with promoting hunger in humans. In humans and other mammals drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote upper gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibacterials (often called motilides; e.g. erythromycin, azithromycin), although for many of these molecules the evidence is sparse. Relatively high doses may induce vomiting and in humans, nausea

    First In human study of a novel biased apelin receptor ligand, MM54, a G-alpha(i) agonist/beta-arrestin antagonist

    Get PDF
    Introduction: The peptide apelin acts via G proteins to cause beneficial vasodilation and potent positive inotropy to ameliorate pulmonary arterial hypertension in humans and animal models. Apelin is internalised via β-arrestin. In contrast, with loss of endogenous apelin, its receptor acts as a mechanosensor, stimulating β-arrestin to induce detrimental cardiac hypertrophy. Our aim was to characterise the action of our apelin ligand, MM54 that in cell based assays blocks β-arrestin but activates the Gαi protein pathway, in this first in human study. Method: Competition binding in human heart (n=3) used [I125] [Pyr1]apelin-13 (0.1nmol/L). β-arrestin recruitment, receptor internalization and forskolin-induced cAMP inhibition were measured in CHO-K1 cells expressing human apelin receptor. Forearm blood flow was measured in 9 volunteers using venous occlusion plethysmography at baseline and at 4 incremental doses (1, 10, 30, 100 nmol/min) of MM54, each for eight minutes. The Aellig hand vein technique was used to measure the effect of 3 incremental doses (3, 30, 300 nmol/min) of MM54 for 15 min on veins pre-constricted with noradrenaline in 6 individuals compared with 8 controls. Data are mean+SEM, n≥3. Results: MM54 had an affinity of pKi = 6.50±0.03. In β-arrestin (pKB 6.93±0.15) and receptor internalization assays (pKB 5.89±0.06) MM54 was an antagonist, but activated the G protein pathway (pD2±SEM 5.86+0.23). At the highest concentration (100 nmol/min), MM54 caused a significant absolute increase in forearm blood flow compared to control arm, representing a 76 % change from baseline (P<0.01, ANOVA with repeated measures with Dunnett’s post hoc analysis on untransformed data). In the hand vein, MM54 caused a significant concentration dependent dilatation in veins over the concentration range tested, with the highest dose causing 57% reversal (P<0.01). Conclusion: At the cellular level, the results suggest MM54 induced a different conformation in the receptor compared with the native peptide apelin, resulting in a biased profile of activating the G protein pathway but blocking β-arrestin. In agreement in clinical studies, in both the arterial and venous circulation, MM54 induced vasodilatation that is thought to be mediated by the G protein pathway

    Cardiac action of the first G protein biased small molecule apelin agonist.

    Get PDF
    Apelin peptide analogues displaying bias towards G protein signalling pathways have beneficial cardiovascular actions compared with the native peptide in humans in vivo. Our aim was to determine whether small molecule agonists could retain G protein bias. We have identified a biased small molecule, CMF-019, and characterised it in vitro and in vivo. In competition radioligand binding experiments in heart homogenates, CMF-019 bound to the human, rat and mouse apelin receptor with high affinity (pKi=8.58±0.04, 8.49±0.04 and 8.71±0.06 respectively). In cell-based functional assays, whereas, CMF-019 showed similar potency for the Gαi pathway to the endogenous agonist [Pyr(1)]apelin-13 (pD2=10.00±0.13 vs 9.34±0.15), in β-arrestin and internalisation assays it was less potent (pD2=6.65±0.15 vs 8.65±0.10 and pD2=6.16±0.21 vs 9.28±0.10 respectively). Analysis of these data demonstrated a bias of ∼400 for the Gαi over the β-arrestin pathway and ∼6000 over receptor internalisation. CMF-019 was tested for in vivo activity using intravenous injections into anaesthetised male Sprague-Dawley rats fitted with a pressure-volume catheter in the left ventricle. CMF-019 caused a significant increase in cardiac contractility of 606±112mmHg/s (p<0.001) at 500nmol. CMF-019 is the first biased small molecule identified at the apelin receptor and increases cardiac contractility in vivo. We have demonstrated that Gαi over β-arrestin/internalisation bias can be retained in a non-peptide analogue and predict that such bias will have the therapeutic benefit following chronic use. CMF-019 is suitable as a tool compound and provides the basis for design of biased agonists with improved pharmacokinetics for treatment of cardiovascular conditions such as pulmonary arterial hypertension.British Heart Foundation [FS/14/59/31282]; Wellcome Trust [WT107715/Z/15/Z], Wellcome Trust Programme in Metabolic and Cardiovascular Disease [096822/Z/11/Z]; Medical Research Council [MRC MC PC 14116]; Pulmonary Hypertension Association UK; Cambridge Biomedical Research Centre Biomedical Resources Grant University of Cambridge [099156/Z/12/Z]; Engineering and Physical Sciences Research Council [EP/M506552/1]; Biomedical Health Research Centre, University of Leed

    Plasma levels of apelin are reduced in patients with liver fibrosis and cirrhosis but are not correlated with circulating levels of bone morphogenetic protein 9 and 10

    Get PDF
    Background: The peptide apelin is expressed in human healthy livers and is implicated in the development of hepatic fibrosis and cirrhosis. Mutations in the bone morphogenetic protein receptor type II (BMPR-II) result in reduced plasma levels of apelin in patients with heritable pulmonary arterial hypertension. Ligands for BMPR-II include bone morphogenetic protein 9 (BMP9), highly expressed in liver, and BMP10, expressed in heart and to a lesser extent liver. However, it is not known whether reductions in BMP9 and/or BMP10, with associated reduction in BMPR-II signalling, correlate with altered levels of apelin in patients with liver fibrosis and cirrhosis. Methods: Plasma from patients with liver fibrosis (n = 14), cirrhosis (n = 56), and healthy controls (n = 25) was solid-phase extracted using a method optimised for recovery of apelin, which was measured by ELISA. Results: Plasma apelin was significantly reduced in liver fibrosis (8.3 ± 1.2 pg/ml) and cirrhosis (6.5 ± 0.6 pg/ml) patients compared with controls (15.4 ± 2.0 pg/ml). There was no obvious relationship between apelin and BMP 9 or BMP10 previously measured in these patients. Within the cirrhotic group, there was no significant correlation between apelin levels and disease severity scores, age, sex, or treatment with β-blockers. Conclusions: Apelin was significantly reduced in plasma of patients with both early (fibrosis) and late-stage (cirrhosis) liver disease. Fibrosis is more easily reversible and may represent a potential target for new therapeutic interventions. However, it remains unclear whether apelin signalling is detrimental in liver disease or is beneficial and therefore, whether an apelin antagonist or agonist have clinical use

    Inotropic action of the puberty hormone kisspeptin in rat, mouse and human: cardiovascular distribution and characteristics of the kisspeptin receptor

    Get PDF
    Kisspeptins, the ligands of the kisspeptin receptor known for its roles in reproduction and cancer, are also vasoconstrictor peptides in atherosclerosis-prone human aorta and coronary artery. The aim of this study was to further investigate the cardiovascular localisation and function of the kisspeptins and their receptor in human compared to rat and mouse heart. Immunohistochemistry and radioligand binding techniques were employed to investigate kisspeptin receptor localisation, density and pharmacological characteristics in cardiac tissues from all three species. Radioimmunoassay was used to detect kisspeptin peptide levels in human normal heart and to identify any pathological changes in myocardium from patients transplanted for cardiomyopathy or ischaemic heart disease. The cardiac function of kisspeptin receptor was studied in isolated human, rat and mouse paced atria, with a role for the receptor confirmed using mice with targeted disruption of Kiss1r. The data demonstrated that kisspeptin receptor-like immunoreactivity localised to endothelial and smooth muscle cells of intramyocardial blood vessels and to myocytes in human and rodent tissue. [¹²⁵I]KP-14 bound saturably, with subnanomolar affinity to human and rodent myocardium (K(D) = 0.12 nM, human; K(D) = 0.44 nM, rat). Positive inotropic effects of kisspeptin were observed in rat, human and mouse. No response was observed in mice with targeted disruption of Kiss1r. In human heart a decrease in cardiac kisspeptin level was detected in ischaemic heart disease. Kisspeptin and its receptor are expressed in the human, rat and mouse heart and kisspeptins possess potent positive inotropic activity. The cardiovascular actions of the kisspeptins may contribute to the role of these peptides in pregnancy but the consequences of receptor activation must be considered if kisspeptin receptor agonists are developed for use in the treatment of reproductive disorders or cancer.This work was supported by grants from the Medical Research Council (http://www.mrc.ac.uk) and the British Heart Foundation (http://www.bhf.org.uk). (Grant numbers PS/02/001 and PG/09/050/27734.)

    Chemerin Elicits Potent Constrictor Actions via Chemokine-Like Receptor 1 (CMKLR1), not G-Protein-Coupled Receptor 1 (GPR1), in Human and Rat Vasculature

    Get PDF
    BACKGROUND: Circulating levels of chemerin are significantly higher in hypertensive patients and positively correlate with blood pressure. Chemerin activates chemokine-like receptor 1 (CMKLR1 or ChemR23) and is proposed to activate the "orphan" G-protein-coupled receptor 1 (GPR1), which has been linked with hypertension. Our aim was to localize chemerin, CMKLR1, and GPR1 in the human vasculature and determine whether 1 or both of these receptors mediate vasoconstriction. METHODS AND RESULTS: Using immunohistochemistry and molecular biology in conduit arteries and veins and resistance vessels, we localized chemerin to endothelium, smooth muscle, and adventitia and found that CMKLR1 and GPR1 were widely expressed in smooth muscle. C9 (chemerin149-157) contracted human saphenous vein (pD2=7.30±0.31) and resistance arteries (pD2=7.05±0.54) and increased blood pressure in rats by 9.1±1.0 mm Hg at 200 nmol. Crucially, these in vitro and in vivo vascular actions were blocked by CCX832, which we confirmed to be highly selective for CMKLR1 over GPR1. C9 inhibited cAMP accumulation in human aortic smooth muscle cells and preconstricted rat aorta, consistent with the observed vasoconstrictor action. Downstream signaling was explored further and, compared to chemerin, C9 showed a bias factor=≈5000 for the Gi protein pathway, suggesting that CMKLR1 exhibits biased agonism. CONCLUSIONS: Our data suggest that chemerin acts at CMKLR1, but not GPR1, to increase blood pressure. Chemerin has an established detrimental role in metabolic syndrome, and these direct vascular actions may contribute to hypertension, an additional risk factor for cardiovascular disease. This study provides proof of principle for the therapeutic potential of selective CMKLR1 antagonists.This work was supported by the British Heart Foundation (FS/12/64/30001 [to AJK], FS/14/59/31282 [to CR], and PG/09/050/27734); Wellcome Trust (100780/Z/12/Z [to LY], 101844 [to CWT], 107715/Z/15/Z [to APD and JJM], and 096822/Z/11/Z [to APD and PY]); the Raymond and Beverley Sackler Fellowship (to LY), and the Medical Research Council (MRC MC_PC_14116; to APD) and by the Pulmonary Hypertension Association and the Cambridge Biomedical Research Centre. Biomedical Resources (grant 099156/Z/12/Z)
    corecore