17 research outputs found

    Unlocking new contrast in a scanning helium microscope.

    Get PDF
    Delicate structures (such as biological samples, organic films for polymer electronics and adsorbate layers) suffer degradation under the energetic probes of traditional microscopies. Furthermore, the charged nature of these probes presents difficulties when imaging with electric or magnetic fields, or for insulating materials where the addition of a conductive coating is not desirable. Scanning helium microscopy is able to image such structures completely non-destructively by taking advantage of a neutral helium beam as a chemically, electrically and magnetically inert probe of the sample surface. Here we present scanning helium micrographs demonstrating image contrast arising from a range of mechanisms including, for the first time, chemical contrast observed from a series of metal-semiconductor interfaces. The ability of scanning helium microscopy to distinguish between materials without the risk of damage makes it ideal for investigating a wide range of systems.This research was supported under the Australian Research Councils Discovery Projects (Project No. DP08831308) funding scheme. Postgraduate research scholarships (M.B., A.F.) from the University of Newcastle gratefully acknowledged. We thank the Newcastle and Cavendish workshops, Donald MacLaren and Kane O’Donnell for technical support, insightful discussions and assistance. This work was performed in part at both the Materials and ACT nodes of the Australian National Fabrication Facility, which is a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and micro-fabrication facilities for Australia’s researchers.This is the final version of the article. It was first available from NPG via http://dx.doi.org/10.1038/ncomms1018

    Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution

    Get PDF
    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean

    Jumping, Rotating, and Flapping: The Atomic-Scale Motion of Thiophene on Cu(111)

    No full text
    Self-assembled monolayers of sulfur-containing heterocycles and linear oligomers containing thiophene groups have been widely employed in organic electronic applications. Here, we investigate the dynamics of isolated thiophene molecules on Cu(111) by combining helium spin-echo (HeSE) spectroscopy with density functional theory calculations. We show that the thiophene/Cu(111) system displays a rich array of aperiodic dynamical phenomena that include jump diffusion between adjacent atop sites over a 59–62 meV barrier and activated rotation around a sulfur–copper anchor, two processes that have been observed previously for related systems. In addition, we present experimental evidence for a new, weakly activated process, the flapping of the molecular ring. Repulsive inter-adsorbate interactions and an exceptionally high friction coefficient of 5 ± 2 ps–1 are also observed. These experiments demonstrate the versatility of the HeSE technique, and the quantitative information extracted in a detailed analysis provides an ideal benchmark for state-of-the-art theoretical techniques including nonlocal adsorbate–substrate interactions
    corecore