58 research outputs found

    PEY11 COST-EFFECTIVENESS MODEL FORAGE-RELATED MACULAR DEGENERATION: COMPARING EARLY AND LATE MACUGEN TREATMENT

    Get PDF

    A low balance between microparticles expressing tissue factor pathway inhibitor and tissue factor is associated with thrombosis in Behçet’s Syndrome

    Get PDF
    Thrombosis is common in Behçet’s Syndrome (BS), and there is a need for better biomarkers for risk assessment. As microparticles expressing Tissue Factor (TF) can contribute to thrombosis in preclinical models, we investigated whether plasma microparticles expressing Tissue Factor (TF) are increased in BS. We compared blood plasma from 72 healthy controls with that from 88 BS patients (21 with a history of thrombosis (Th+) and 67 without (Th−). Using flow cytometry, we found that the total plasma MP numbers were increased in BS compared to HC, as were MPs expressing TF and Tissue Factor Pathway Inhibitor (TFPI) (all p 0.7 had a history of clinical thrombosis. We conclude that TF-expressing MP are increased in BS and that an imbalance between microparticulate TF and TFPI may predispose to thrombosis

    Medium-size-vessel vasculitis

    Get PDF
    Medium-size-artery vasculitides do occur in childhood and manifest, in the main, as polyarteritis nodosa (PAN), cutaneous PAN and Kawasaki disease. Of these, PAN is the most serious, with high morbidity and not inconsequential mortality rates. New classification criteria for PAN have been validated that will have value in epidemiological studies and clinical trials. Renal involvement is common and recent therapeutic advances may result in improved treatment options. Cutaneous PAN is a milder disease characterised by periodic exacerbations and often associated with streptococcal infection. There is controversy as to whether this is a separate entity or part of the systemic PAN spectrum. Kawasaki disease is an acute self-limiting systemic vasculitis, the second commonest vasculitis in childhood and the commonest cause of childhood-acquired heart disease. Renal manifestations occur and include tubulointerstitial nephritis and renal failure. An infectious trigger and a genetic predisposition seem likely. Intravenous immunoglobulin (IV-Ig) and aspirin are effective therapeutically, but in resistant cases, either steroid or infliximab have a role. Greater understanding of the pathogenetic mechanisms involved in these three types of vasculitis and better long-term follow-up data will lead to improved therapy and prediction of prognosis

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    Solubilizing and stabilizing proteins in anhydrous lonic liquids through formation of protein-polymer surfactant nanoconstructs

    Get PDF
    Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems
    corecore