26 research outputs found

    The M/GP5 Glycoprotein Complex of Porcine Reproductive and Respiratory Syndrome Virus Binds the Sialoadhesin Receptor in a Sialic Acid-Dependent Manner

    Get PDF
    The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide and is considered the most significant viral disease in the swine industry today. In past years, studies on the entry of the virus into its host cell have led to the identification of a number of essential virus receptors and entry mediators. However, viral counterparts for these molecules have remained elusive and this has made rational development of new generation vaccines impossible. The main objective of this study was to identify the viral counterparts for sialoadhesin, a crucial PRRSV receptor on macrophages. For this purpose, a soluble form of sialoadhesin was constructed and validated. The soluble sialoadhesin could bind PRRSV in a sialic acid-dependent manner and could neutralize PRRSV infection of macrophages, thereby confirming the role of sialoadhesin as an essential PRRSV receptor on macrophages. Although sialic acids are present on the GP3, GP4 and GP5 envelope glycoproteins, only the M/GP5 glycoprotein complex of PRRSV was identified as a ligand for sialoadhesin. The interaction was found to be dependent on the sialic acid binding capacity of sialoadhesin and on the presence of sialic acids on GP5. These findings not only contribute to a better understanding of PRRSV biology, but the knowledge and tools generated in this study also hold the key to the development of a new generation of PRRSV vaccines

    Nutrient enrichment of a heterotrophic stream alters leaf litter nutritional quality and shredder physiological condition via the microbial pathway

    No full text
    Streams receiving agricultural runoff are typically enriched with nutrients, which variously impact stream communities. We examined the effects of phosphate and nitrate enrichment on leaf litter breakdown, microbial biomass and the nutrition of an invertebrate shredder to determine how nutrients are transferred through the stream detrital food web. Using artificial streams, individuals of Anisocentropus kirramus (Trichoptera: Calamoceratidae) were fed leaves of Apodytes brachystylus (Icacinaceae) under different nutrient regimes. We measured the amount of leaf material consumed or decomposed and the microbial biomass colonising the leaves. The dry mass, and protein, lipid and carbohydrate composition of A. kirramus larvae were determined after 28-day feeding on the leaves. Supplements of phosphorus, but not nitrogen, enhanced leaf breakdown, microbial growth and growth of larvae. Microbial biomass and dry mass of larvae increased with nutrient enrichment and they were significantly correlated. Thus, the phosphorus supplement was transmitted through the detrital food web via the microbial pathway, resulting in higher nutritional quality of leaves and enhanced physiological condition of the shredder. Understanding such subtle relationships is important in determining the impacts of anthropogenic contaminants on freshwater ecosystems

    Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes

    Get PDF
    Abstract Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even though the tropics occupy 40% of the Earth’s land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Amazon forest and Cerrado savanna), predicting major differences among biomes in relation to temperature and precipitation regimes. Precipitation explained most of litter inputs and storage, which were generally higher in more humid biomes (litterfall: 384, 422 and 308 g m−2 y−1, storage: 55, 113 and 38 g m−2, on average in Atlantic forest, Amazon and Cerrado, respectively). Temporal dynamics varied across biomes in relation to precipitation and temperature, with uniform litter inputs but seasonal storage in Atlantic forest streams, seasonal inputs in Amazon and Cerrado streams, and aseasonal storage in Amazon streams. Our findings suggest that litter dynamics vary greatly within the tropics, but point to the major role of precipitation, which contrasts with the main influence of temperature in temperate areas
    corecore