1,430 research outputs found

    Spin-density fluctuations and the fluctuation-dissipation theorem in 3d ferromagnetic metals

    Get PDF
    Spatial and time scales of spin density fluctuations (SDF) were analyzed in 3d ferromagnets using ab initio linear response calculations of complete wavevector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDF are spread continuously over the entire Brillouin zone and while majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin wave contribution and a much larger high-energy component from more localized excitations. Using the fluctuation-dissipation theorem (FDT), the on-site spin correlator (SC) and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed

    Superconductivity of metallic boron in MgB_2

    Full text link
    Boron in MgB_2 forms layers of honeycomb lattices with magnesium as a space filler. Band structure calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly from B orbitals. Strong bonding with an ionic component and considerable metallic density of states yield a sizeable electron-phonon coupling. Using the rigid atomic sphere approximation and an analogy to Al, we estimate the coupling constant lambda to be of order 1. Together with high phonon frequencies, which we estimate via zone-center frozen phonon calculations to be between 300 and 700 cm^-1, this produces a high critical temperature, consistent with recent experiments reporting Tc=39 K (J. Akimitsu et al., to be published). Thus MgB_2 can be viewed as an analog of the long sought, but still hypothetical, superconducting metallic hydrogen.Comment: several typos corrected, most importantly, units in the tables fixed and a missing zero in the expression for the resistivity restore

    Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation

    Get PDF
    Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown that the original expressions for exchange integrals based on the magnetic force theorem (J. Phys. F14 L125 (1984)) are optimal for the calculations of the magnon spectrum whereas static response function is better described by the ``renormalized'' magnetic force theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC

    Experimental and theoretical analysis of the upper critical field in FSF trilayers

    Full text link
    The upper critical magnetic field H_{c2} in thin-film FSF trilayer spin-valve cores is studied experimentally and theoretically in geometries perpendicular and parallel to the heterostructure surface. The series of samples with variable thicknesses of the bottom and of the top Cu_{41}Ni_{59} F-layers are prepared in a single run, utilizing a wedge deposition technique. The critical field H_{c2} is measured in the temperature range 0.480.4-8 K and for magnetic fields up to 9 Tesla. A transition from oscillatory to reentrant behavior of the superconducting transition temperature versus F-layers thickness, induced by an external magnetic field, has been observed for the first time. In order to properly interpret the experimental data, we develop a quasiclassical theory, enabling one to evaluate the temperature dependence of the critical field and the superconducting transition temperature for an arbitrary set of the system parameters. A fairly good agreement between our experimental data and theoretical predictions is demonstrated for all samples, using a single set of fit parameters. This confirms adequacy of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) physics in determining the unusual superconducting properties of the studied Cu_{41}Ni_{59}/Nb/Cu_{41}Ni_{59} spin-valve core trilayers.Comment: 16 pages, 7 figures; published versio

    Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes

    Full text link
    We study the static screening in a Hubbard-like model using quantum Monte Carlo. We find that the random phase approximation is surprisingly accurate almost up to the Mott transition. We argue that in alkali-doped Fullerenes the Coulomb pseudopotential μ\mu^\ast is not very much reduced by retardation effects. Therefore efficient screening is important in reducing μ\mu^{\ast} sufficiently to allow for an electron-phonon driven superconductivity. In this way the Fullerides differ from the conventional picture, where retardation effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Metal-insulator transitions: Influence of lattice structure, Jahn-Teller effect, and Hund's rule coupling

    Full text link
    We study the influence of the lattice structure, the Jahn-Teller effect and the Hund's rule coupling on a metal-insulator transition in AnC60 (A= K, Rb). The difference in lattice structure favors A3C60 (fcc) being a metal and A4C60 (bct) being an insulator, and the coupling to Hg Jahn-Teller phonons favors A4C60 being nonmagnetic. The coupling to Hg (Ag) phonons decreases (increases) the value Uc of the Coulomb integral at which the metal-insulator transition occurs. There is an important partial cancellation between the Jahn-Teller effect and the Hund's rule coupling.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Theory of Superconducting TcT_{c} of doped fullerenes

    Get PDF
    We develop the nonadiabatic polaron theory of superconductivity of MxC60M_{x}C_{60} taking into account the polaron band narrowing and realistic electron-phonon and Coulomb interactions. We argue that the crossover from the BCS weak-coupling superconductivity to the strong-coupling polaronic and bipolaronic superconductivity occurs at the BCS coupling constant λ1\lambda\sim 1 independent of the adiabatic ratio, and there is nothing ``beyond'' Migdal's theorem except small polarons for any realistic electron-phonon interaction. By the use of the polaronic-type function and the ``exact'' diagonalization in the truncated Hilbert space of vibrons (``phonons'') we calculate the ground state energy and the electron spectral density of the C60C_{60}^{-} molecule. This allows us to describe the photoemission spectrum of C60C_{60}^{-} in a wide energy region and determine the electron-phonon interaction. The strongest coupling is found with the high-frequency pinch Ag2A_{g2} mode and with the Frenkel exciton. We clarify the crucial role of high-frequency bosonic excitations in doped fullerenes which reduce the bare bandwidth and the Coulomb repulsion allowing the intermediate and low-frequency phonons to couple two small polarons in a Cooper pair. The Eliashberg-type equations are solved for low-frequency phonons. The value of the superconducting TcT_{c}, its pressure dependence and the isotope effect are found to be in a remarkable agreement with the available experimental data.Comment: 20 pages, Latex, 4 figures available upon reques

    Diffuse charge and Faradaic reactions in porous electrodes

    Get PDF
    Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to allow us to derive analytical approximations for the steady-state and early transients. We also present numerical solutions to validate the analysis and to illustrate the evolution of ion densities, pore potential, surface charge, and reaction rates in response to an applied voltage

    Superconductivity in Fullerides

    Full text link
    Experimental studies of superconductivity properties of fullerides are briefly reviewed. Theoretical calculations of the electron-phonon coupling, in particular for the intramolecular phonons, are discussed extensively. The calculations are compared with coupling constants deduced from a number of different experimental techniques. It is discussed why the A_3 C_60 are not Mott-Hubbard insulators, in spite of the large Coulomb interaction. Estimates of the Coulomb pseudopotential μ\mu^*, describing the effect of the Coulomb repulsion on the superconductivity, as well as possible electronic mechanisms for the superconductivity are reviewed. The calculation of various properties within the Migdal-Eliashberg theory and attempts to go beyond this theory are described.Comment: 33 pages, latex2e, revtex using rmp style, 15 figures, submitted to Review of Modern Physics, more information at http://radix2.mpi-stuttgart.mpg.de/fullerene/fullerene.htm
    corecore