128 research outputs found

    The effect of spontaneous collapses on neutrino oscillations

    Full text link
    We compute the effect of collapse models on neutrino oscillations. The effect of the collapse is to modify the evolution of the `spatial' part of the wave function, which indirectly amounts to a change on the flavor components. In many respects, this phenomenon is similar to neutrino propagation through matter. For the analysis we use the mass proportional CSL model, and perform the calculation to second order perturbation theory. As we will show, the CSL prediction is very small - mainly due to the very small mass of neutrinos - and practically undetectable.Comment: 24 pages, RevTeX. Updated versio

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Prospects to improve the nutritional quality of crops

    Get PDF
    A growing world population as well as the need to enhance sustainability and health create challenges for crop breeding. To address these challenges, not only quantitative but also qualitative improvements are needed, especially regarding the macro- and micronutrient composition and content. In this review, we describe different examples of how the nutritional quality of crops and the bioavailability of individual nutrients can be optimised. We focus on increasing protein content, the use of alternative protein crops and improving protein functionality. Furthermore, approaches to enhance the content of vitamins and minerals as well as healthy specialised metabolites and long-chain polyunsaturated fatty acids are considered. In addition, methods to reduce antinutrients and toxins are presented. These approaches could help to decrease the ‘hidden hunger’ caused by micronutrient deficiencies. Furthermore, a more diverse crop range with improved nutritional profile could help to shift to healthier and more sustainable plant-based diets

    Finite-time destruction of entanglement and non-locality by environmental influences

    Full text link
    Entanglement and non-locality are non-classical global characteristics of quantum states important to the foundations of quantum mechanics. Recent investigations have shown that environmental noise, even when it is entirely local in influence, can destroy both of these properties in finite time despite giving rise to full quantum state decoherence only in the infinite time limit. These investigations, which have been carried out in a range of theoretical and experimental situations, are reviewed here.Comment: 27 pages, 6 figures, review article to appear in Foundations of Physic

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT
    corecore