136 research outputs found

    Strip Planarity Testing of Embedded Planar Graphs

    Get PDF
    In this paper we introduce and study the strip planarity testing problem, which takes as an input a planar graph G(V,E)G(V,E) and a function γ:V→{1,2,…,k}\gamma:V \rightarrow \{1,2,\dots,k\} and asks whether a planar drawing of GG exists such that each edge is monotone in the yy-direction and, for any u,v∈Vu,v\in V with γ(u)<γ(v)\gamma(u)<\gamma(v), it holds y(u)<y(v)y(u)<y(v). The problem has strong relationships with some of the most deeply studied variants of the planarity testing problem, such as clustered planarity, upward planarity, and level planarity. We show that the problem is polynomial-time solvable if GG has a fixed planar embedding.Comment: 24 pages, 12 figures, extended version of 'Strip Planarity Testing' (21st International Symposium on Graph Drawing, 2013

    Clustered Planarity with Pipes

    Get PDF
    We study the version of the C-Planarity problem in which edges connecting the same pair of clusters must be grouped into pipes, which generalizes the Strip Planarity problem. We give algorithms to decide several families of instances for the two variants in which the order of the pipes around each cluster is given as part of the input or can be chosen by the algorithm

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    Advancements on SEFE and Partitioned Book Embedding Problems

    Full text link
    In this work we investigate the complexity of some problems related to the {\em Simultaneous Embedding with Fixed Edges} (SEFE) of kk planar graphs and the PARTITIONED kk-PAGE BOOK EMBEDDING (PBE-kk) problems, which are known to be equivalent under certain conditions. While the computational complexity of SEFE for k=2k=2 is still a central open question in Graph Drawing, the problem is NP-complete for k≥3k \geq 3 [Gassner {\em et al.}, WG '06], even if the intersection graph is the same for each pair of graphs ({\em sunflower intersection}) [Schaefer, JGAA (2013)]. We improve on these results by proving that SEFE with k≥3k \geq 3 and sunflower intersection is NP-complete even when the intersection graph is a tree and all the input graphs are biconnected. Also, we prove NP-completeness for k≥3k \geq 3 of problem PBE-kk and of problem PARTITIONED T-COHERENT kk-PAGE BOOK EMBEDDING (PTBE-kk) - that is the generalization of PBE-kk in which the ordering of the vertices on the spine is constrained by a tree TT - even when two input graphs are biconnected. Further, we provide a linear-time algorithm for PTBE-kk when k−1k-1 pages are assigned a connected graph. Finally, we prove that the problem of maximizing the number of edges that are drawn the same in a SEFE of two graphs is NP-complete in several restricted settings ({\em optimization version of SEFE}, Open Problem 99, Chapter 1111 of the Handbook of Graph Drawing and Visualization).Comment: 29 pages, 10 figures, extended version of 'On Some NP-complete SEFE Problems' (Eighth International Workshop on Algorithms and Computation, 2014

    Relaxing the Constraints of Clustered Planarity

    Full text link
    In a drawing of a clustered graph vertices and edges are drawn as points and curves, respectively, while clusters are represented by simple closed regions. A drawing of a clustered graph is c-planar if it has no edge-edge, edge-region, or region-region crossings. Determining the complexity of testing whether a clustered graph admits a c-planar drawing is a long-standing open problem in the Graph Drawing research area. An obvious necessary condition for c-planarity is the planarity of the graph underlying the clustered graph. However, such a condition is not sufficient and the consequences on the problem due to the requirement of not having edge-region and region-region crossings are not yet fully understood. In order to shed light on the c-planarity problem, we consider a relaxed version of it, where some kinds of crossings (either edge-edge, edge-region, or region-region) are allowed even if the underlying graph is planar. We investigate the relationships among the minimum number of edge-edge, edge-region, and region-region crossings for drawings of the same clustered graph. Also, we consider drawings in which only crossings of one kind are admitted. In this setting, we prove that drawings with only edge-edge or with only edge-region crossings always exist, while drawings with only region-region crossings may not. Further, we provide upper and lower bounds for the number of such crossings. Finally, we give a polynomial-time algorithm to test whether a drawing with only region-region crossings exist for biconnected graphs, hence identifying a first non-trivial necessary condition for c-planarity that can be tested in polynomial time for a noticeable class of graphs

    A Universal Slope Set for 1-Bend Planar Drawings

    Get PDF
    We describe a set of Delta-1 slopes that are universal for 1-bend planar drawings of planar graphs of maximum degree Delta>=4; this establishes a new upper bound of Delta-1 on the 1-bend planar slope number. By universal we mean that every planar graph of degree Delta has a planar drawing with at most one bend per edge and such that the slopes of the segments forming the edges belong to the given set of slopes. This improves over previous results in two ways: Firstly, the best previously known upper bound for the 1-bend planar slope number was 3/2(Delta-1) (the known lower bound being 3/4(Delta-1)); secondly, all the known algorithms to construct 1-bend planar drawings with O(Delta) slopes use a different set of slopes for each graph and can have bad angular resolution, while our algorithm uses a universal set of slopes, which also guarantees that the minimum angle between any two edges incident to a vertex is pi/(Delta-1)
    • …
    corecore