136 research outputs found
Strip Planarity Testing of Embedded Planar Graphs
In this paper we introduce and study the strip planarity testing problem,
which takes as an input a planar graph and a function and asks whether a planar drawing of exists
such that each edge is monotone in the -direction and, for any
with , it holds . The problem has strong
relationships with some of the most deeply studied variants of the planarity
testing problem, such as clustered planarity, upward planarity, and level
planarity. We show that the problem is polynomial-time solvable if has a
fixed planar embedding.Comment: 24 pages, 12 figures, extended version of 'Strip Planarity Testing'
(21st International Symposium on Graph Drawing, 2013
Clustered Planarity with Pipes
We study the version of the C-Planarity problem in which edges connecting the same pair of clusters must be grouped into pipes, which generalizes the Strip Planarity problem. We give algorithms to decide several families of instances for the two variants in which the order of the pipes around each cluster is given as part of the input or can be chosen by the algorithm
Optimal Morphs of Convex Drawings
We give an algorithm to compute a morph between any two convex drawings of
the same plane graph. The morph preserves the convexity of the drawing at any
time instant and moves each vertex along a piecewise linear curve with linear
complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201
Advancements on SEFE and Partitioned Book Embedding Problems
In this work we investigate the complexity of some problems related to the
{\em Simultaneous Embedding with Fixed Edges} (SEFE) of planar graphs and
the PARTITIONED -PAGE BOOK EMBEDDING (PBE-) problems, which are known to
be equivalent under certain conditions.
While the computational complexity of SEFE for is still a central open
question in Graph Drawing, the problem is NP-complete for [Gassner
{\em et al.}, WG '06], even if the intersection graph is the same for each pair
of graphs ({\em sunflower intersection}) [Schaefer, JGAA (2013)].
We improve on these results by proving that SEFE with and
sunflower intersection is NP-complete even when the intersection graph is a
tree and all the input graphs are biconnected. Also, we prove NP-completeness
for of problem PBE- and of problem PARTITIONED T-COHERENT
-PAGE BOOK EMBEDDING (PTBE-) - that is the generalization of PBE- in
which the ordering of the vertices on the spine is constrained by a tree -
even when two input graphs are biconnected. Further, we provide a linear-time
algorithm for PTBE- when pages are assigned a connected graph.
Finally, we prove that the problem of maximizing the number of edges that are
drawn the same in a SEFE of two graphs is NP-complete in several restricted
settings ({\em optimization version of SEFE}, Open Problem , Chapter of
the Handbook of Graph Drawing and Visualization).Comment: 29 pages, 10 figures, extended version of 'On Some NP-complete SEFE
Problems' (Eighth International Workshop on Algorithms and Computation, 2014
Relaxing the Constraints of Clustered Planarity
In a drawing of a clustered graph vertices and edges are drawn as points and
curves, respectively, while clusters are represented by simple closed regions.
A drawing of a clustered graph is c-planar if it has no edge-edge, edge-region,
or region-region crossings. Determining the complexity of testing whether a
clustered graph admits a c-planar drawing is a long-standing open problem in
the Graph Drawing research area. An obvious necessary condition for c-planarity
is the planarity of the graph underlying the clustered graph. However, such a
condition is not sufficient and the consequences on the problem due to the
requirement of not having edge-region and region-region crossings are not yet
fully understood.
In order to shed light on the c-planarity problem, we consider a relaxed
version of it, where some kinds of crossings (either edge-edge, edge-region, or
region-region) are allowed even if the underlying graph is planar. We
investigate the relationships among the minimum number of edge-edge,
edge-region, and region-region crossings for drawings of the same clustered
graph. Also, we consider drawings in which only crossings of one kind are
admitted. In this setting, we prove that drawings with only edge-edge or with
only edge-region crossings always exist, while drawings with only region-region
crossings may not. Further, we provide upper and lower bounds for the number of
such crossings. Finally, we give a polynomial-time algorithm to test whether a
drawing with only region-region crossings exist for biconnected graphs, hence
identifying a first non-trivial necessary condition for c-planarity that can be
tested in polynomial time for a noticeable class of graphs
A Universal Slope Set for 1-Bend Planar Drawings
We describe a set of Delta-1 slopes that are universal for 1-bend planar drawings of planar graphs of maximum degree Delta>=4; this establishes a new upper bound of Delta-1 on the 1-bend planar slope number. By universal we mean that every planar graph of degree Delta has a planar drawing with at most one bend per edge and such that the slopes of the segments forming the edges belong to the given set of slopes. This improves over previous results in two ways: Firstly, the best previously known upper bound for the 1-bend planar slope number was 3/2(Delta-1) (the known lower bound being 3/4(Delta-1)); secondly, all the known algorithms to construct 1-bend planar drawings with O(Delta) slopes use a different set of slopes for each graph and can have bad angular resolution, while our algorithm uses a universal set of slopes, which also guarantees that the minimum angle between any two edges incident to a vertex is pi/(Delta-1)
- …