16,351 research outputs found
Space-time defects :Domain walls and torsion
The theory of distributions in non-Riemannian spaces is used to obtain exact
static thin domain wall solutions of Einstein-Cartan equations of gravity.
Curvature -singularities are found while Cartan torsion is given by
Heaviside functions. Weitzenb\"{o}ck planar walls are caracterized by torsion
-singularities and zero curvature. It is shown that Weitzenb\"{o}ck
static thin domain walls do not exist exactly as in general relativity. The
global structure of Weitzenb\"{o}ck nonstatic torsion walls is investigated.Comment: J.Math.Phys.39,(1998),Jan. issu
Geometric Phase for Fermionic Quasiparticles Scattering by Disgyration in Superfluids
We consider a Volovik's analog model for description of a topological defects
in a superfluid and we investigate the scattering of quasiparticles in this
background. The analog of the gravitational Aharonov-Bohm in this system is
found. An analysis of this problem employing loop variables is considered and
corroborates for the existence of the Aharonov-Bohm effect in this system. The
results presented here may be used to study the Aharonov-Bohm effect in
superconductors.Comment: 7 pages, to appear in Europhys. Let
Teleparallel Spin Connection
A new expression for the spin connection of teleparallel gravity is proposed,
given by minus the contorsion tensor plus a zero connection. The corresponding
minimal coupling is covariant under local Lorentz transformation, and
equivalent to the minimal coupling prescription of general relativity. With
this coupling prescription, therefore, teleparallel gravity turns out to be
fully equivalent to general relativity, even in the presence of spinor fields.Comment: 2 pages, RevTeX, to appear in Phys. Rev D (Brief Report
Gravitation and Duality Symmetry
By generalizing the Hodge dual operator to the case of soldered bundles, and
working in the context of the teleparallel equivalent of general relativity, an
analysis of the duality symmetry in gravitation is performed. Although the
basic conclusion is that, at least in the general case, gravitation is not dual
symmetric, there is a particular theory in which this symmetry shows up. It is
a self dual (or anti-self dual) teleparallel gravity in which, due to the fact
that it does not contribute to the interaction of fermions with gravitation,
the purely tensor part of torsion is assumed to vanish. The ensuing fermionic
gravitational interaction is found to be chiral. Since duality is intimately
related to renormalizability, this theory may eventually be more amenable to
renormalization than teleparallel gravity or general relativity.Comment: 7 pages, no figures. Version 2: minor presentation changes,
references added. Accepted for publication in Int. J. Mod. Phys.
Mass Generation from Lie Algebra Extensions
Applied to the electroweak interactions, the theory of Lie algebra extensions
suggests a mechanism by which the boson masses are generated without resource
to spontaneous symmetry breaking. It starts from a gauge theory without any
additional scalar field. All the couplings predicted by the Weinberg-Salam
theory are present, and a few others which are nevertheless consistent within
the model.Comment: 11 pages; revtex; title and PACS have been changed; comments included
in the manuscrip
Localization properties of a tight-binding electronic model on the Apollonian network
An investigation on the properties of electronic states of a tight-binding
Hamiltonian on the Apollonian network is presented. This structure, which is
defined based on the Apollonian packing problem, has been explored both as a
complex network, and as a substrate, on the top of which physical models can
defined. The Schrodinger equation of the model, which includes only nearest
neighbor interactions, is written in a matrix formulation. In the uniform case,
the resulting Hamiltonian is proportional to the adjacency matrix of the
Apollonian network. The characterization of the electronic eigenstates is based
on the properties of the spectrum, which is characterized by a very large
degeneracy. The rotation symmetry of the network and large number of
equivalent sites are reflected in all eigenstates, which are classified
according to their parity. Extended and localized states are identified by
evaluating the participation rate. Results for other two non-uniform models on
the Apollonian network are also presented. In one case, interaction is
considered to be dependent of the node degree, while in the other one, random
on-site energies are considered.Comment: 7pages, 7 figure
- …