11,102 research outputs found

    Electronic Griffiths phase of the d=2 Mott transition

    Full text link
    We investigate the effects of disorder within the T=0 Brinkman-Rice (BR) scenario for the Mott metal-insulator transition (MIT) in two dimensions (2d). For sufficiently weak disorder the transition retains the Mott character, as signaled by the vanishing of the local quasiparticles (QP) weights Z_{i} and strong disorder screening at criticality. In contrast to the behavior in high dimensions, here the local spatial fluctuations of QP parameters are strongly enhanced in the critical regime, with a distribution function P(Z) ~ Z^{\alpha-1} and \alpha tends to zero at the transition. This behavior indicates a robust emergence of an electronic Griffiths phase preceding the MIT, in a fashion surprisingly reminiscent of the "Infinite Randomness Fixed Point" scenario for disordered quantum magnets.Comment: 4+ pages, 5 figures, final version to appear in Physical Review Letter

    Teleparallel origin of the Fierz picture for spin-2 particle

    Get PDF
    A new approach to the description of spin-2 particle in flat and curved spacetime is developed on the basis of the teleparallel gravity theory. We show that such an approach is in fact a true and natural framework for the Fierz representation proposed recently by Novello and Neves. More specifically, we demonstrate how the teleparallel theory fixes uniquely the structure of the Fierz tensor, discover the transparent origin of the gauge symmetry of the spin 2 model, and derive the linearized Einstein operator from the fundamental identity of the teleparallel gravity. In order to cope with the consistency problem on the curved spacetime, similarly to the usual Riemannian approach, one needs to include the non-minimal (torsion dependent) coupling terms.Comment: 5 pages, Revtex4, no figures. Accepted for publication in Phys. Rev.

    Model for erosion-deposition patterns

    Full text link
    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.Comment: 8 pages, 12 figures, submitted to Phys. Rev.

    Nonextensive Statistical Mechanics Application to Vibrational Dynamics of Protein Folding

    Full text link
    The vibrational dynamics of protein folding is analyzed in the framework of Tsallis thermostatistics. The generalized partition functions, internal energies, free energies and temperature factor (or Debye-Waller factor) are calculated. It has also been observed that the temperature factor is dependent on the non-extensive parameter q which behaves like a scale parameter in the harmonic oscillator model. As q1q\to 1, we also show that these approximations agree with the result of Gaussian network model.Comment: 8 pages, 2 figure

    Fracturing highly disordered materials

    Full text link
    We investigate the role of disorder on the fracturing process of heterogeneous materials by means of a two-dimensional fuse network model. Our results in the extreme disorder limit reveal that the backbone of the fracture at collapse, namely the subset of the largest fracture that effectively halts the global current, has a fractal dimension of 1.22±0.011.22 \pm 0.01. This exponent value is compatible with the universality class of several other physical models, including optimal paths under strong disorder, disordered polymers, watersheds and optimal path cracks on uncorrelated substrates, hulls of explosive percolation clusters, and strands of invasion percolation fronts. Moreover, we find that the fractal dimension of the largest fracture under extreme disorder, df=1.86±0.01d_f=1.86 \pm 0.01, is outside the statistical error bar of standard percolation. This discrepancy is due to the appearance of trapped regions or cavities of all sizes that remain intact till the entire collapse of the fuse network, but are always accessible in the case of standard percolation. Finally, we quantify the role of disorder on the structure of the largest cluster, as well as on the backbone of the fracture, in terms of a distinctive transition from weak to strong disorder characterized by a new crossover exponent.Comment: 5 pages, 4 figure

    Produção e qualidade de frutos de cultivares de melancia sob irrigação por gotejamento.

    Get PDF
    Esta pesquisa foi conduzida no Campo Experimental da Embrapa Meio-Norte, Teresina, PI (05°05? S; 42°48?W e 74,4m), com o objetivo de avaliar a produção e qualidade dos frutos de três cultivares de melancia: o híbrido duplo Top Gun, o híbrido triplo Shadow e a cultivar Crimson Sweet, sob irrigação por gotejamento. Aplicou-se uma lâmina de irrigação diária equivalente a 100% de reposição da ET0. O delineamento experimental foi o de blocos casualizados com quatro repetições e duas amostras por parcela. Foram avaliados os seguintes parâmetros: peso médio dos frutos (kg), número de frutos por planta, produtividade (t.ha-1), fator de forma do fruto (dado pela relação entre a largura e o comprimento do fruto), sólidos solúveis totais (ºBrix), pH, conteúdo de vitamina C (mg/100 g de polpa) e acidez total titulável (% ácido cítrico). A cultivar Crimson Sweet apresentou diferença significativa para peso médio dos frutos (6,13 kg) e fator de forma do fruto (0,92), enquanto a cultivar Top Gun apresentou maior conteúdo de vitamina C (6,71 mg/100 g de polpa) e pH (5,21). A produtividade da variedade Crimson Sweet e Top Gun foi influenciada pelo número de frutos por planta

    Torsion Gravity: a Reappraisal

    Full text link
    The role played by torsion in gravitation is critically reviewed. After a description of the problems and controversies involving the physics of torsion, a comprehensive presentation of the teleparallel equivalent of general relativity is made. According to this theory, curvature and torsion are alternative ways of describing the gravitational field, and consequently related to the same degrees of freedom of gravity. However, more general gravity theories, like for example Einstein-Cartan and gauge theories for the Poincare and the affine groups, consider curvature and torsion as representing independent degrees of freedom. By using an active version of the strong equivalence principle, a possible solution to this conceptual question is reviewed. This solution favors ultimately the teleparallel point of view, and consequently the completeness of general relativity. A discussion of the consequences for gravitation is presented.Comment: RevTeX, 34 pages. Review article to be published by Int. J. Mod. Phys.
    corecore