12,938 research outputs found

    Fundraising and vote distribution: a non-equilibrium statistical approach

    Full text link
    The number of votes correlates strongly with the money spent in a campaign, but the relation between the two is not straightforward. Among other factors, the output of a ballot depends on the number of candidates, voters, and available resources. Here, we develop a conceptual framework based on Shannon entropy maximization and Superstatistics to establish a relation between the distributions of money spent by candidates and their votes. By establishing such a relation, we provide a tool to predict the outcome of a ballot and to alert for possible misconduct either in the report of fundraising and spending of campaigns or on vote counting. As an example, we consider real data from a proportional election with 63236323 candidates, where a detailed data verification is virtually impossible, and show that the number of potential misconducting candidates to audit can be reduced to only nine

    Renormalization of the N=1 Abelian Super-Chern-Simons Theory Coupled to Parity-Preserving Matter

    Full text link
    We analyse the renormalizability of an Abelian N=1 super-Chern-Simons model coupled to parity-preserving matter on the light of the regularization independent algebraic method. The model shows to be stable under radiative corrections and to be gauge anomaly free.Comment: Latex, 7 pages, no figure

    Breathing synchronization in interconnected networks

    Get PDF
    Global synchronization in a complex network of oscillators emerges from the interplay between its topology and the dynamics of the pairwise interactions among its numerous components. When oscillators are spatially separated, however, a time delay appears in the interaction which might obstruct synchronization. Here we study the synchronization properties of interconnected networks of oscillators with a time delay between networks and analyze the dynamics as a function of the couplings and communication lag. We discover a new breathing synchronization regime, where two groups appear in each network synchronized at different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the other in anti-phase with their counterpart. For strong couplings, instead, networks are internally synchronized but a phase shift between them might occur. The implications of our findings on several socio-technical and biological systems are discussed.Comment: 7 pages, 3 figures + 3 pages of Supplemental Materia

    Torsion and Gravitation: A new view

    Full text link
    According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Despite equivalent, however, they act differently: whereas curvature yields a geometric description, in which the concept of gravitational force is absent, torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means essentially that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent with the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which appears as a mere alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is madeComment: To appear on IJMP

    Gauge Theories with Lorentz-Symmetry Violation by Symplectic Projector Method

    Full text link
    The violation of Lorentz symmetry is studied from the point of view of a canonical formulation. We make the usual analysis on the constraints structure of the Carroll-Field-Jackiw model. In this context we derive the equations of motion for the physical variables and check out the dispersion relations obtained from them. Therefore, by the analysis using Symplectic Projector Method (SPM), we can check the results about this type of Lorentz breaking with those in the recent literature: in this sense we can confirm that the configuration of vμv^{\mu} space-like is stable, and the vμv^{\mu} time-like carry tachionic modes.Comment: 7 pages and no figure

    Spinless Matter in Transposed-Equi-Affine Theory of Gravity

    Full text link
    We derive and discus the equations of motion for spinless matter: relativistic spinless scalar fields, particles and fluids in the recently proposed by A. Saa model of gravity with covariantly constant volume with respect to the transposed connection in Einstein-Cartan spaces. A new interpretation of this theory as a theory with variable Plank "constant" is suggested. We show that the consistency of the semiclassical limit of the wave equation and classical motion dictates a new definite universal interaction of torsion with massive fields.Comment: 29 pages, latex, no figures. New Section on semiclassical limit of wave equation added; old references rearranged; new references, remarks, comments, and acknowledgments added; typos correcte

    Processing of formic acid-containing ice by heavy and energetic cosmic ray analogues

    Full text link
    Formic acid (HCOOH) has been extensively detected in space environments, including interstellar medium (gas and grains), comets and meteorites. Such environments are often subjected to the action of ionizing agents, which may cause changes in the molecular structure, thus leading to formation of new species. Formic acid is a possible precursor of pre-biotic species, such as Glycine (NH2CH2COOH). This work investigates experimentally the physicochemical effects resulting from interaction of heavy and energetic cosmic ray analogues (46MeV 58Ni11+) in H2O:HCOOH (1:1) ice, at 15 K, in ultrahigh vacuum regime, using Fourier transform infrared spectrometry in the mid-infrared region (4000-600 cm-1 or 2.5-12.5 microns). After the bombardment, the sample was slowly heated to room temperature. The results show the dissociation cross-section for the formic acid of 2.4x10^-13 cm2, and half-life due to galactic cosmic rays of 8x10^7 yr. The IR spectra show intense formation of CO and CO2, and small production of more complex species at high fluences
    corecore