15,185 research outputs found
Future dynamics in f(R) theories
The gravity theories provide an alternative way to explain the current
cosmic acceleration without invoking dark energy matter component. However, the
freedom in the choice of the functional forms of gives rise to the
problem of how to constrain and break the degeneracy among these gravity
theories on theoretical and/or observational grounds. In this paper to proceed
further with the investigation on the potentialities, difficulties and
limitations of gravity, we examine the question as to whether the future
dynamics can be used to break the degeneracy between gravity theories by
investigating the future dynamics of spatially homogeneous and isotropic dust
flat models in two gravity theories, namely the well known gravity and another by A. Aviles et al., whose motivation comes
from the cosmographic approach to gravity. To this end we perform a
detailed numerical study of the future dynamic of these flat model in these
theories taking into account the recent constraints on the cosmological
parameters made by the Planck team. We show that besides being powerful for
discriminating between gravity theories, the future dynamics technique
can also be used to determine the fate of the Universe in the framework of
these gravity theories. Moreover, there emerges from our numerical
analysis that if we do not invoke a dark energy component with
equation-of-state parameter one still has dust flat FLRW solution
with a big rip, if gravity deviates from general relativity via . We also show that FLRW dust solutions with do not
necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results
are emphasized, connection with the recent literature improved, typos
corrected, references adde
Teleparallel Spin Connection
A new expression for the spin connection of teleparallel gravity is proposed,
given by minus the contorsion tensor plus a zero connection. The corresponding
minimal coupling is covariant under local Lorentz transformation, and
equivalent to the minimal coupling prescription of general relativity. With
this coupling prescription, therefore, teleparallel gravity turns out to be
fully equivalent to general relativity, even in the presence of spinor fields.Comment: 2 pages, RevTeX, to appear in Phys. Rev D (Brief Report
Localization properties of a tight-binding electronic model on the Apollonian network
An investigation on the properties of electronic states of a tight-binding
Hamiltonian on the Apollonian network is presented. This structure, which is
defined based on the Apollonian packing problem, has been explored both as a
complex network, and as a substrate, on the top of which physical models can
defined. The Schrodinger equation of the model, which includes only nearest
neighbor interactions, is written in a matrix formulation. In the uniform case,
the resulting Hamiltonian is proportional to the adjacency matrix of the
Apollonian network. The characterization of the electronic eigenstates is based
on the properties of the spectrum, which is characterized by a very large
degeneracy. The rotation symmetry of the network and large number of
equivalent sites are reflected in all eigenstates, which are classified
according to their parity. Extended and localized states are identified by
evaluating the participation rate. Results for other two non-uniform models on
the Apollonian network are also presented. In one case, interaction is
considered to be dependent of the node degree, while in the other one, random
on-site energies are considered.Comment: 7pages, 7 figure
- …