11,891 research outputs found
Manipulating Light Pulses via Dynamically Controlled Photonic Bandgap
When a resonance associated with electromagnetically induced transparency
(EIT) in an atomic ensemble is modulated by an off-resonant standing light
wave, a band of frequencies can appear for which light propagation is
forbidden. We show that dynamic control of such a bandgap can be used to
coherently convert a propagating light pulse into a stationary excitation with
non-vanishing photonic component. This can be accomplished with high efficiency
and negligble noise even at a level of few-photon quantum fields thereby
facilitating possible applications in quantum nonlinear optics and quantum
information.Comment: 4 pages, 3 figure
Shaping quantum pulses of light via coherent atomic memory
We describe a technique for generating pulses of light with controllable
photon numbers, propagation direction, timing, and pulse shapes. The technique
is based on preparation of an atomic ensemble in a state with a desired number
of atomic spin excitations, which is later converted into a photon pulse.
Spatio-temporal control over the pulses is obtained by exploiting long-lived
coherent memory for photon states and electromagnetically induced transparency
(EIT) in an optically dense atomic medium. Using photon counting experiments we
observe generation and shaping of few-photon sub-Poissonian light pulses. We
discuss prospects for controlled generation of high-purity n-photon Fock states
using this technique.Comment: 4 pages, 4 figure
Nonlinear optics with stationary pulses of light
We show that the recently demonstrated technique for generating stationary
pulses of light [Nature {\bf 426}, 638 (2003)] can be extended to localize
optical pulses in all three spatial dimensions in a resonant atomic medium.
This method can be used to dramatically enhance the nonlinear interaction
between weak optical pulses. In particular, we show that an efficient Kerr-like
interaction between two pulses can be implemented as a sequence of several
purely linear optical processes. The resulting process may enable coherent
interactions between single photon pulses.Comment: 4 pages, 2 figure
New thought experiment to test the generalized second law of thermodynamics
We propose an extension of the original thought experiment proposed by
Geroch, which sparked much of the actual debate and interest on black hole
thermodynamics, and show that the generalized second law of thermodynamics is
in compliance with it.Comment: 4 pages (revtex), 3 figure
Aperiodic quantum XXZ chains: Renormalization-group results
We report a comprehensive investigation of the low-energy properties of
antiferromagnetic quantum XXZ spin chains with aperiodic couplings. We use an
adaptation of the Ma-Dasgupta-Hu renormalization-group method to obtain
analytical and numerical results for the low-temperature thermodynamics and the
ground-state correlations of chains with couplings following several two-letter
aperiodic sequences, including the quasiperiodic Fibonacci and other
precious-mean sequences, as well as sequences inducing strong geometrical
fluctuations. For a given aperiodic sequence, we argue that in the easy-plane
anisotropy regime, intermediate between the XX and Heisenberg limits, the
general scaling form of the thermodynamic properties is essentially given by
the exactly-known XX behavior, providing a classification of the effects of
aperiodicity on XXZ chains. We also discuss the nature of the ground-state
structures, and their comparison with the random-singlet phase, characteristic
of random-bond chains.Comment: Minor corrections; published versio
Internal-strain mediated coupling between polar Bi and magnetic Mn ions in the defect-free quadruple-perovskite BiMnMnO
By means of neutron powder diffraction, we investigated the effect of the
polar Bi ion on the magnetic ordering of the Mn ions in
BiMnMnO, the counterpart with \textit{quadruple} perovskite
structure of the \textit{simple} perovskite BiMnO. The data are consistent
with a \textit{noncentrosymmetric} spacegroup which contrasts the
\textit{centrosymmetric} one previously reported for the isovalent and
isomorphic compound LaMnMnO, which gives evidence of a
Bi-induced polarization of the lattice. At low temperature, the two
Mn sublattices of the and sites order antiferromagnetically
(AFM) in an independent manner at 25 and 55 K, similarly to the case of
LaMnMnO. However, both magnetic structures of
BiMnMnO radically differ from those of LaMnMnO.
In BiMnMnO the moments of the sites form
an anti-body AFM structure, whilst the moments \textbf{M} of the
sites result from a large and \textit{uniform} modulation along the b-axis of the moments \textbf{M} in the
-plane. The modulation is strikingly correlated with the displacements of
the Mn ions induced by the Bi ions. Our analysis unveils a strong
magnetoelastic coupling between the internal strain created by the Bi
ions and the moment of the Mn ions in the sites. This is ascribed to
the high symmetry of the oxygen sites and to the absence of oxygen defects, two
characteristics of quadruple perovskites not found in simple ones, which
prevent the release of the Bi-induced strain through distortions or
disorder. This demonstrates the possibility of a large magnetoelectric coupling
in proper ferroelectrics and suggests a novel concept of internal strain
engineering for multiferroics design.Comment: 9 pages, 7 figures, 5 table
The role of Dark Matter interaction in galaxy clusters
We consider a toy model to analyze the consequences of dark matter
interaction with a dark energy background on the overall rotation of galaxy
clusters and the misalignment between their dark matter and baryon
distributions when compared to {\Lambda}CDM predictions. The interaction
parameters are found via a genetic algorithm search. The results obtained
suggest that interaction is a basic phenomenon whose effects are detectable
even in simple models of galactic dynamics.Comment: RevTeX 4.1, 5 pages, 3 figure
Resonant Production of Scalar Diquarks at the Next Generation Electron-Positron Colliders
We investigate the potential of TESLA and JLC/NLC electron-positron linear
collider designs to observe diquarks produced resonantly in processes involving
hard photons.Comment: 14 pages, 8 figures, coded in RevTEX, uses epsfi
- …