1,109 research outputs found

    Charge Dynamics in the Planar t-J Model

    Full text link
    The finite-temperature optical conductivity σ(ω)\sigma(\omega) in the planar tJt-J model is analysed using recently introduced numerical method based on the Lanczos diagonalization of small systems (up to 20 sites), as well as by analytical approaches, including the method of frequency moments and the retraceable-path approximation. Results for a dynamical mobility of a single hole at elevated temperatures T>tT>t reveal a Gaussian-like μ(ω)\mu(\omega) spectra, however with a nonanalytical behavior at low ω\omega. In the single hole response a difference between the ferromagnetic (J=0) and the antiferromagnetic (J>0J>0) polaron shows up at T<JT<J. At larger dopings numerical results in studied systems are consistent with the thermodynamical behavior for T>T0.1 tT>T^*\ge 0.1~t. σ(ω)\sigma(\omega) spectra show a non-Drude falloff at large frequencies. In particular for `optimum' doping nh0.2n_h \sim 0.2 we obtain in the low-ω,T\omega,T regime the relaxation rate τ10.6(ω+ξT)\tau^{-1} \sim 0.6 (\omega+\xi T) with ξ3\xi \sim 3, being consistent with the marginal Fermi liquid concept and experiments. Within the same regime we reproduce the nearly linear variation of dc resistivity ρ\rho with TT. This behavior is weakly dependent on JJ, provided that J<tJ<t.Comment: 21 pages of text plus 17 figures, postscrip

    Family Symmetries and Proton Decay

    Get PDF
    The proton decay modes pK0e+p\to K^0 e^+ and pK0μ+p\to K^0 \mu^+ may be visible in certain supersymmetric theories, and if seen would provide evidence for new flavor physics at extremely short distances. These decay modes can arise from the dimension five operator (Q1Q1Q2L1,2)(Q_1Q_1Q_2L_{1,2}), where QiQ_i and LiL_i are ith{i^{th}} generation quark and lepton superfields respectively. Such an operator is not generated at observable levels due to gauge or Higgs boson exchange in a minimal GUT. However in theories that explain the fermion mass hierarchy, it may be generated at the Planck scale with a strength such that the decays pK0+p\to K^0 \ell^+ are both compatible with the proton lifetime and visible at Super-Kamiokande. Observable proton decay can even occur in theories without unification.Comment: NSF-ITP-94-69, LBL-35807, DOE/ER/40561-148-INT94-00-61, 13 pages, written with harvma

    The Numerical Renormalization Group Method for correlated electrons

    Full text link
    The Numerical Renormalization Group method (NRG) has been developed by Wilson in the 1970's to investigate the Kondo problem. The NRG allows the non-perturbative calculation of static and dynamic properties for a variety of impurity models. In addition, this method has been recently generalized to lattice models within the Dynamical Mean Field Theory. This paper gives a brief historical overview of the development of the NRG and discusses its application to the Hubbard model; in particular the results for the Mott metal-insulator transition at low temperatures.Comment: 14 pages, 7 eps-figures include

    A molecular map of mesenchymal tumors

    Get PDF
    Background Bone and soft tissue tumors represent a diverse group of neoplasms thought to derive from cells of the mesenchyme or neural crest. Histological diagnosis is challenging due to the poor or heterogenous differentiation of many tumors, resulting in uncertainty over prognosis and appropriate therapy. Results We have undertaken a broad and comprehensive study of the gene expression profile of 96 tumors with representatives of all mesenchymal tissues, including several problem diagnostic groups. Using machine learning methods adapted to this problem we identify molecular fingerprints for most tumors, which are pathognomonic (decisive) and biologically revealing. Conclusion We demonstrate the utility of gene expression profiles and machine learning for a complex clinical problem, and identify putative origins for certain mesenchymal tumor

    Anisotropic optical properties of single-crystal GdBa2Cu3O7-delta

    Get PDF
    The optical spectrum of reduced-T(c) GdBa2Cu3O7-delta has been measured for polarizations parallel and perpendicular to the ab plane. The sample was an oxygen-deficient single crystal with a large face containing the c axis. The polarized reflectance from this face was measured from 20-300 K in the spectral region from 30-3000 cm-1, with 300 K data to 30 000 cm-1. Kramers-Kronig analysis was used to determine the spectral dependence of the ab and the c components of the dielectric tensor. The optical properties are strongly anisotropic. The ab-plane response resembles that of other reduced-T(c) materials whereas the c axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response along c above and below T(c). This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes

    Effect of Magnetic Impurities on Suppression of the Transition Temperature in Disordered Superconductors

    Full text link
    We calculate the first-order perturbative correction to the transition temperature TcT_c in a superconductor with both non-magnetic and magnetic impurities. We do this by first evaluating the correction to the effective potential, Ω(Δ)\Omega(\Delta), and then obtain the first-order correction to the order parameter, Δ\Delta, by finding the minimum of Ω(Δ)\Omega(\Delta). Setting Δ=0\Delta=0 finally allows TcT_c to be evaluated. TcT_c is now a function of both the resistance per square, RR_\square, a measure of the non-magnetic disorder, and the spin-flip scattering rate, 1/τs1/\tau_s, a measure of the magnetic disorder. We find that the effective pair-breaking rate per magnetic impurity is virtually independent of the resistance per square of the film, in agreement with an experiment of Chervenak and Valles. This conclusion is supported by both the perturbative calculation, and by a non-perturbative re-summation technique.Comment: 29 pages, 9 figure

    Disordered Boson Systems: A Perturbative Study

    Full text link
    A hard-core disordered boson system is mapped onto a quantum spin 1/2 XY-model with transverse random fields. It is then generalized to a system of spins with an arbitrary magnitude S and studied through a 1/S expansion. The first order 1/S expansion corresponds to a spin-wave theory. The effect of weak disorder is studied perturbatively within such a first order 1/S scheme. We compute the reduction of the speed of sound and the life time of the Bloch phonons in the regime of weak disorder. Generalizations of the present study to the strong disordered regime are discussed.Comment: 27 pages, revte
    corecore