4,170 research outputs found
Impacts of the global economic crisis on foreign trade in lower-income economies in the Greater Mekong Sub-region and policy responses: the case of Vietnam and its implications for Lao PDR and Cambodia
This research seeks to better understand the impacts of the global economic crisis on Vietnam’s foreign trade and policy responses, and from this, draw inferences for Lao PDR and Cambodia.Global economic crisis, lower-income economices, GMS, CLMV
An E2-guided E3 Screen Identifies the RNF17-UBE2U Pair as Regulator of the Radiosensitivity, Immunodeficiency, Dysmorphic Features, and Learning Difficulties (RIDDLE) Syndrome Protein RNF168
Protein ubiquitination has emerged as a pivotal regulatory reaction that promotes cellular responses to DNA damage. With a goal to delineate the DNA damage signal transduction cascade, we systematically analyzed the human E2 ubiquitin- and ubiquitin-like-conjugating enzymes for their ability to mobilize the DNA damage marker 53BP1 onto ionizing radiation-induced DNA double strand breaks. An RNAi-based screen identified UBE2U as a candidate regulator of chromatin responses at double strand breaks. Further mining of the UBE2U interactome uncovered its cognate E3 RNF17 as a novel factor that, via the radiosensitivity, immunodeficiency, dysmorphic features, and learning difficulties (RIDDLE) syndrome protein RNF168, enforces DNA damage responses. Our screen allowed us to uncover new players in the mammalian DNA damage response and highlights the instrumental roles of ubiquitin machineries in promoting cell responses to genotoxic stress.published_or_final_versio
Astrocytes organize associative memory
We investigate one aspect of the functional role played by astrocytes in neuron-astrocyte networks present in the mammal brain. To highlight the effect of neuron-astrocyte interaction, we consider simplified networks with bidirectional neuron-astrocyte communication and without any connections between neurons. We show that the fact, that astrocyte covers several neurons and a different time scale of calcium events in astrocyte, alone can lead to the appearance of neural associative memory. Without any doubt, this mechanism makes the neuron networks more flexible to learning, and, hence, may contribute to the explanation, why astrocytes have been evolutionary needed for the development of the mammal brain
Modeling Working Memory in a Spiking Neuron Network Accompanied by Astrocytes
We propose a novel biologically plausible computational model of working memory (WM) implemented by a spiking neuron network (SNN) interacting with a network of astrocytes. The SNN is modeled by synaptically coupled Izhikevich neurons with a non-specific architecture connection topology. Astrocytes generating calcium signals are connected by local gap junction diffusive couplings and interact with neurons via chemicals diffused in the extracellular space. Calcium elevations occur in response to the increased concentration of the neurotransmitter released by spiking neurons when a group of them fire coherently. In turn, gliotransmitters are released by activated astrocytes modulating the strength of the synaptic connections in the corresponding neuronal group. Input information is encoded as two-dimensional patterns of short applied current pulses stimulating neurons. The output is taken from frequencies of transient discharges of corresponding neurons. We show how a set of information patterns with quite significant overlapping areas can be uploaded into the neuron-astrocyte network and stored for several seconds. Information retrieval is organized by the application of a cue pattern representing one from the memory set distorted by noise. We found that successful retrieval with the level of the correlation between the recalled pattern and ideal pattern exceeding 90% is possible for the multi-item WM task. Having analyzed the dynamical mechanism of WM formation, we discovered that astrocytes operating at a time scale of a dozen of seconds can successfully store traces of neuronal activations corresponding to information patterns. In the retrieval stage, the astrocytic network selectively modulates synaptic connections in the SNN leading to successful recall. Information and dynamical characteristics of the proposed WM model agrees with classical concepts and other WM models
Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1.
Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >107 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34+ HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34+ HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4+ T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting
Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction
Tuning the bandgap in ferroelectric complex oxides is a possible route for improving the photovoltaic activity of materials. Here, we report the realization of this effect in epitaxial thin films of the ferroelectric complex oxide Bi3.25La0.75Ti3O12 (BLT) suitably doped by Fe and Co. Our study shows that Co (BLCT) doping and combined Fe, Co (BLFCT) doping lead to a reduction of the bandgap by more than 1 eV compared to undoped BLT, accompanied by a surprisingly more efficient visible light absorption. Both BLCT and BLFCT films can absorb visible light with a wavelength of up to 500 nm while still exhibiting ferroelectricity, whereas undoped BLT only absorbs UV light with a wavelength of less than 350 nm. Correlated with its bandgap reduction, the BLFCT film shows a photocurrent density enhanced by 25 times compared to that of BLT films. Density functional theory calculations indicate that the bandgap contraction is caused by the formation of new energy states below the conduction bands due to intermixed transition metal dopants (Fe, Co) in BLT. This mechanism of tuning the bandgap by simple doping can be applied to other wide-bandgap complex oxides, thereby enabling their use in solar energy conversion or optoelectronic applications
Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21) ratios and placental FGF21 production in gestational diabetes
Objectives: Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants.
Design: CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA.
Results: Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05).
Conclusions: The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points
On the (1 − C<sub>2</sub>) condition
In this paper, we give some results on (1 − C2)−modules and 1−continuous modules
Indirect inguinal hernia masquerading as a Spigelian hernia
Inguinal hernia usually developed and descended into scrotum. The clinical presentation is inguinal or
inguino-scrotal swelling. Abdominal wall weakness as it is frequently seen in African tropical zones
produces often rare clinical case. We report a case of inguinal hernia presented as an abdominal wall swelling clinically suggestive of a
Spigelian hernia and discuss the mechanism
Characterization of a potent non-cytotoxic shRNA directed to the HIV-1 co-receptor CCR5
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
- …