31 research outputs found

    Dislocation-Actuated Growth and Inhibition of Hexagonal L-Cystine Crystallization at the Molecular Level

    Get PDF
    Crystallization of L-cystine is a critical process in the pathogenesis of kidney stone formation in cystinuria, a disorder affecting more than 20 000 individuals in the United States alone. In an effort to elucidate the crystallization of L-cystine and the mode of action of tailored growth inhibitors that may constitute effective therapies, real-time in situ atomic force microscopy has been used to investigate the surface micromorphology and growth kinetics of the {0001} faces of L-cystine at various supersaturations and concentrations of the growth inhibitor L-cystine dimethylester (CDME). Crystal growth is actuated by screw dislocations on the {0001} L-cystine surface, producing hexagonal spiral hillocks that are a consequence of six interlacing spirals of anisotropic molecular layers. The high level of elastic stress in the immediate vicinity around the dislocation line results in a decrease in the step velocities and a corresponding increase in the spacing of steps. The kinetic curves acquired in the presence of CDME conform to the classical Cabrera–Vermilyea model. Anomalous birefringence in the {101̅0} growth sectors, combined with computational modeling, supports a high fidelity of stereospecific binding of CDME, in a unique orientation, exclusively at one of the six crystallographically unique projections on the {1010} plane

    Biological effects of naturally occurring and man-made fibres: in vitro cytotoxicity and mutagenesis in mammalian cells

    Get PDF
    Cytotoxicity and mutagenicity of tremolite, erionite and the man-made ceramic (RCF-1) fibre were studied using the human– hamster hybrid A L cells. Results from these fibres were compared with those of UICC Rhodesian chrysotile fibres. The A L cell mutation assay, based on the S1 gene marker located on human chromosome 11, the only human chromosome contained in the hybrid cell, has been shown to be more sensitive than conventional assays in detecting deletion mutations. Tremolite, erionite and RCF-1 fibres were significantly less cytotoxic to A L cells than chrysotile. Mutagenesis studies at the HPRT locus revealed no significant mutant yield with any of these fibres. In contrast, both erionite and tremolite induced dose-dependent S1− mutations in fibre-exposed cells, with the former inducing a significantly higher mutant yield than the latter fibre type. On the other hand, RCF-1 fibres were largely non-mutagenic. At equitoxic doses (cell survival at ∼ 0.7), erionite was found to be the most potent mutagen among the three fibres tested and at a level comparable to that of chrysotile fibres. These results indicate that RCF-1 fibres are non-genotoxic under the conditions used in the studies and suggest that the high mesothelioma incidence previously observed in hamster may either be a result of selective sensitivity of hamster pleura to fibre-induced chronic irritation or as a result of prolonged fibre treatment. Furthermore, the relatively high mutagenic potential for erionite is consistent with its documented carcinogenicity. © 1999 Cancer Research Campaig

    Phyllosilicates: Associated Fibrous Minerals

    No full text

    Talc Pneumoconiosis in Italy

    No full text

    Calcium-dependent regulation of the voltage-gated sodium channel hH1: Intrinsic and extrinsic sensors use a common molecular switch

    No full text
    The function of the human cardiac voltage-gated sodium channel Na(V)1.5 (hH1) is regulated in part by binding of calcium to an EF hand in the C-terminal cytoplasmic domain. hH1 is also regulated via an extrinsic calcium-sensing pathway mediated by calmodulin (CaM) via binding to an IQ motif immediately adjacent to the EF-hand domain. The intrinsic EF-hand domain is shown here to interact with the IQ motif, which controls calcium affinity. Remarkably, mutation of the IQ residues has only a minor effect on CaM affinity but drastically reduces calcium affinity of the EF-hand domain, whereas the Brugada mutation A1924T significantly reduces CaM affinity but has no effect on calcium affinity of the EF-hand domain. Moreover, the differences in the biochemical effects of the mutations directly correlate with contrasting effects on channel electrophysiology. A comprehensive model is proposed in which the hH1 IQ motif serves as a molecular switch, coupling the intrinsic and extrinsic calcium sensors
    corecore