22 research outputs found

    Deuteration protects asparagine residues against racemization

    No full text
    Racemization in proteins and peptides at sites of L-asparaginyl and L-aspartyl residues contributes to their spontaneous degradation, especially in the biological aging process. Amino acid racemization involves deprotonation of the alpha carbon and replacement of the proton in the opposite stereoconfiguration; this reaction is much faster for aspartate/asparagine than for other amino acids because these residues form a succinimide ring in which resonance stabilizes the carbanion resulting from proton loss. To determine if the replacement of the hydrogen atom on the alpha carbon with a deuterium atom might decrease the rate of racemization and thus stabilize polypeptides, we synthesized a hexapeptide, VYPNGA, in which the three carbon-bound protons in the asparaginyl residue were replaced with deuterium atoms. Upon incubation of this peptide in pH 7.4 buffer at 37 °C, we found that the rate of deamidation via the succinimide intermediate was unchanged by the presence of the deuterium atoms. However, the accumulation of the D-aspartyl and D-isoaspartyl forms resulting from racemization and hydrolysis of the succinimide was decreased more than five-fold in the deuterated peptide over a 20 day incubation at physiological temperature and pH. Additionally, we found that the succinimide intermediate arising from the degradation of the deuterated asparaginyl peptide was slightly less likely to open to the isoaspartyl configuration than was the protonated succinimide. These findings suggest that the kinetic isotope effect resulting from the presence of deuteriums in asparagine residues can limit the accumulation of at least some of the degradation products that arise as peptides and proteins age

    Delivery of mtZFNs into early mouse embryos

    No full text
    Mitochondrial diseases often result from mutations in the mitochondrial genome (mtDNA). In most cases, mutant mtDNA coexists with wild-type mtDNA, resulting in heteroplasmy. One potential future approach to treat heteroplasmic mtDNA diseases is the specific elimination of pathogenic mtDNA mutations, lowering the level of mutant mtDNA below pathogenic thresholds. Mitochondrially targeted zinc-finger nucleases (mtZFNs) have been demonstrated to specifically target and introduce double-strand breaks in mutant mtDNA, facilitating substantial shifts in heteroplasmy. One application of mtZFN technology, in the context of heteroplasmic mtDNA disease, is delivery into the heteroplasmic oocyte or early embryo to eliminate mutant mtDNA, preventing transmission of mitochondrial diseases through the germline. Here we describe a protocol for efficient production of mtZFN mRNA in vitro, and delivery of these into 0.5 dpc mouse embryos to elicit shifts of mtDNA heteroplasmy

    Delivery of mtZFNs into early mouse embryos

    No full text
    Mitochondrial diseases often result from mutations in the mitochondrial genome (mtDNA). In most cases, mutant mtDNA coexists with wild-type mtDNA, resulting in heteroplasmy. One potential future approach to treat heteroplasmic mtDNA diseases is the specific elimination of pathogenic mtDNA mutations, lowering the level of mutant mtDNA below pathogenic thresholds. Mitochondrially-targeted zinc finger nucleases (mtZFNs) have been demonstrated to specifically target and introduce double-strand breaks in mutant mtDNA, facilitating substantial shifts in heteroplasmy. One application of mtZFN technology, in the context of heteroplasmic mtDNA disease, is delivery into the heteroplasmic oocyte or early embryo to eliminate mutant mtDNA, preventing transmission of mitochondrial diseases through the germline. Here we describe a protocol for efficient production of mtZFN mRNA in vitro, and delivery of these into 0.5 dpc mouse embryos to elicit shifts of mtDNA heteroplasmy
    corecore