13 research outputs found

    Modeling heat transfer in butter products : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) in Bioprocess Engineering, Institute of Technology and Engineering, Massey University, Palmerston North, New Zealand

    Get PDF
    Butter keeping quality and pallet physical stability during transport and storage are dependent on the temperature distribution through the product. Understanding these temperature changes are of vital importance for the dairy industry with regard to butter manufacture, storage and shipping. Three dimensional mathematical models of heat transfer were developed to predict thawing and freezing in butter products. These models require accurate thermophysical data as an input. Specific heat capacity and enthalpy of butter with different composition was measured using Differential Scanning Calorimetry. The specific heat capacity of butter differs for cooling and heating operations due to significant supercooling and delayed crystallization of the fat fraction of butter at temperatures well below the equilibrium phase change temperature during cooling. This reduces the heat capacity for cooling relative to that for heating. Thawing of individual blocks of butter was accurately predicted by the conduction only model (no mass transfer limitations) with equilibrium thermal properties giving accurate predictions when the butter was completely frozen before thawing. For partially frozen butter the conduction model with the measured temperature dependent specific heat capacity data for unfrozen butter including melting of some of the fat fraction gave accurate predictions. For freezing it was observed that water in the butter supercools many degrees below its initial freezing point before freezing due to its water in oil structure. Experiments suggested that during freezing release of latent heat observed as a temperature rebound is controlled as much by the rate of crystallisation of water in each of the water droplets as by the rate of heat transfer. A conduction only model including water crystallization kinetics based on the Avrami Model predicted freezing in butter successfully. Simple models with equilibrium thermal properties and nucleation only kinetics (based on homogenous nucleation theory) or the sensible heat only model (no release of latent heat) gave poor predictions. The models for individual blocks were extended to predict heat transfer in butter pallets. A butter pallet contains product, packaging material and the air entrapped between the packaging and butter cartons. Measurements were made for freezing and thawing of full and half pallets at a commercial storage facility and in the University laboratory. Thawing and freezing in wrapped tightly stacked pallets was predicted accurately by the conduction only model with effective thermal properties (incorporating butter, packaging and air) estimated by the parallel model. For unwrapped tightly stacked or loosely stacked pallets there is potential for air flow between the adjacent cartons of butter. An alternative approach was developed which consisted of modeling the pallet on block by block basis using effective heat transfer coefficients for each surface. Different heat transfer coefficients were used on different faces of the blocks depending on the location of the block in the pallet. This approach gave good predictions for both unwrapped tightly stacked and loosely stacked pallets using the estimated effective heat transfer coefficients from the measured data. Further experimental and/or modelling work is required in order to develop guidelines for estimating effective heat transfer coefficient values for internal block face for industrial scenarios

    Plasmodium falciparum is dependent on de novo myo-inositol biosynthesis for assembly of GPI glycolipids and infectivity

    No full text
    Intra-erythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo-inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P.falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo-inositol-3-phosphate, indicating increased de novo biosynthesis of myo-inositol from glucose 6-phosphate. Metabolic labelling studies with 13C-U-glucose in the presence and absence of exogenous inositol confirmed that de novo myo-inositol synthesis occurs in parallel with myo-inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo-inositol was used to synthesize bulk PI, only de novo-synthesized myo-inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo-inositol 3-phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P.falciparum asexual stages are critically dependent on de novo myo-inositol biosynthesis for assembly of a sub-pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P.falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways

    Comprehensive profiling and quantitation of amine group containing metabolites

    Full text link
    Primary and secondary amines, including amino acids, biogenic amines, hormones, neurotransmitters, and plant siderophores, are readily derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using easily performed experimental methodology. Complex mixtures of these amine derivatives can be fractionated and quantified using liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS). Upon collision induced dissociation (CID) in a quadrupole collision cell, all derivatized compounds lose the aminoquinoline tag. With the use of untargeted fragmentation scan functions, such as precursor ion scanning, the loss of the aminoquinoline tag (Amq) can be monitored to identify derivatized species; and the use of targeted fragmentation scans, such as multiple reaction monitoring, can be exploited to quantitate amine-containing molecules. Further, with the use of accurate mass, charge state, and retention time, identification of unknown amines is facilitated. The stability of derivatized amines was found to be variable with oxidatively labile derivatives rapidly degrading. With the inclusion of antioxidant and reducing agents, tris(2-carboxyethyl)-phosphine (TCEP) and ascorbic acid, into both extraction solvents and reaction buffers, degradation was significantly decreased, allowing reproducible identification and quantification of amine compounds in large sample sets

    Mus musculus deficient for secretory antibodies show delayed growth with an altered urinary metabolome

    No full text
    Abstract Background The polymeric immunoglobulin receptor (pIgR) maintains the integrity of epithelial barriers by transporting polymeric antibodies and antigens through the epithelial mucosa into the lumen. In this study, we examined the role of pIgR in maintaining gut barrier integrity, which is important for the normal development in mice. Methods Cohorts of pIgR −/− mice and their wildtype controls were housed under Specific Pathogen Free (SPF) conditions and monitored for weight gain as an indicator of development over time. The general physiology of the gastrointestinal tract was analysed using immunohistochemistry in young (8–12 weeks of age) and aged mice (up to 18 months of age), and the observed immunopathology in pIgR −/− mice was further characterised using flow cytometry. Urinary metabolites were analysed using gas chromatography-mass spectrometry (GC-MS), which revealed changes in metabolites that correlated with age-related increase in gut permeability in pIgR −/− mice. Results We observed that pIgR −/− mice exhibited delayed growth, and this phenomenon is associated with low-grade gut inflammation that increased with ageing. The gross intraepithelial lymphocytic (IEL) infiltration characteristic of pIgR −/− mice was redefined as CD8α+αβ+ T cells, the majority of which expressed high levels of CD103 and CD69 consistent with tissue resident memory T cells (TRM). Comparison of the urinary metabolome between pIgR −/− and wild-type mice revealed key changes in urinary biomarkers fucose, glycine and Vitamin B5, suggestive of altered mucosal permeability. A significant increase in gut permeability was confirmed by analysing the site-specific uptake of sugar probes in different parts of the intestine. Conclusion Our data show that loss of the secretory antibody system in mice results in enhanced accumulation of inflammatory IELs in the gut, which likely reflects ongoing inflammation in reaction to gut microbiota or food antigens, leading to delayed growth in pIgR −/− mice. We demonstrate that this leads to the presence of a unique urinary metabolome profile, which may provide a biomarker for altered gut permeability

    Cross-platform urine metabolomics of experimental hyperglycemia in type 2 diabetes

    Full text link
    Hyperglycemia causes diabetic nephropathy, a condition for which there are no specific diagnostic markers thatpredict progression to renal failure. Here we describe a multiplatform metabolomic analysis of urine from individualswith type 2 diabetes, collected before and immediately following experimental hyperglycemia. We used targetednuclear magnetic resonance spectroscopy (NMR), liquid chromatography - mass spectrometry (LC-MS) and gaschromatography - MS (GC-MS) to identify markers of hyperglycemia. Following optimization of data normalisation andstatistical analysis, we identified a reproducible NMR and LC-MS based urine signature of hyperglycemia. Significantincreases of alanine, alloisoleucine, isoleucine, leucine, N-isovaleroylglycine, valine, choline, lactate and taurine anddecreases of arginine, gamma-aminobutyric acid, hippurate, suberate and N-acetylglutamate were observed. GC-MSanalysis identified a number of metabolites differentially present in post-glucose versus baseline urine, but these could not be identified using current metabolite libraries. This analysis is an important first step towards identifying biomarkers of early-stage diabetic nephropathy

    Mus musculus deficient for secretory antibodies show delayed growth with an altered urinary metabolome

    Get PDF
    Abstract Background The polymeric immunoglobulin receptor (pIgR) maintains the integrity of epithelial barriers by transporting polymeric antibodies and antigens through the epithelial mucosa into the lumen. In this study, we examined the role of pIgR in maintaining gut barrier integrity, which is important for the normal development in mice. Methods Cohorts of pIgR −/− mice and their wildtype controls were housed under Specific Pathogen Free (SPF) conditions and monitored for weight gain as an indicator of development over time. The general physiology of the gastrointestinal tract was analysed using immunohistochemistry in young (8–12 weeks of age) and aged mice (up to 18 months of age), and the observed immunopathology in pIgR −/− mice was further characterised using flow cytometry. Urinary metabolites were analysed using gas chromatography-mass spectrometry (GC-MS), which revealed changes in metabolites that correlated with age-related increase in gut permeability in pIgR −/− mice. Results We observed that pIgR −/− mice exhibited delayed growth, and this phenomenon is associated with low-grade gut inflammation that increased with ageing. The gross intraepithelial lymphocytic (IEL) infiltration characteristic of pIgR −/− mice was redefined as CD8α+αβ+ T cells, the majority of which expressed high levels of CD103 and CD69 consistent with tissue resident memory T cells (TRM). Comparison of the urinary metabolome between pIgR −/− and wild-type mice revealed key changes in urinary biomarkers fucose, glycine and Vitamin B5, suggestive of altered mucosal permeability. A significant increase in gut permeability was confirmed by analysing the site-specific uptake of sugar probes in different parts of the intestine. Conclusion Our data show that loss of the secretory antibody system in mice results in enhanced accumulation of inflammatory IELs in the gut, which likely reflects ongoing inflammation in reaction to gut microbiota or food antigens, leading to delayed growth in pIgR −/− mice. We demonstrate that this leads to the presence of a unique urinary metabolome profile, which may provide a biomarker for altered gut permeability

    MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics

    Get PDF
    BackgroundAn increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments.ResultsHere we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS.ConclusionMASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/
    corecore