21 research outputs found

    Enhanced ERbeta immunoexpression and apoptosis in the germ cells of cimetidine-treated rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cimetidine, refereed as antiandrogenic drug, causes hormonal changes in male patients such as increased testosterone and FSH levels. In the rat testis, structural alterations in the seminiferous tubules have been related to germ cell loss and Sertoli cell death by apoptosis. Regarding the important role of Sertoli cells in the conversion of testosterone into estrogen, via aromatase, the immunoexpression of estrogen receptors-beta (ERbeta) was evaluated in the germ cells of untreated and treated rats with cimetidine. A relationship between ERbeta immunoreactivity and apoptosis was also investigated in the germ cells of damaged tubules.</p> <p>Methods</p> <p>Immunohistochemistry for detection of ERbeta and TUNEL method were performed in testicular sections of adult male rats treated with 50 mg/Kg of cimetidine (CmG) or saline solution (CG) for 52 days.</p> <p>Results</p> <p>In CG, a cytoplasmic immunoexpression for ERbeta was observed in spermatogonia, primary spermatocytes and spermatids. An evident ERbeta immunoreactivity was always observed in the flagellum and residual bodies of late spermatids. In CmG, the cytoplasm or cytoplasm and nuclei of germ cells of the damaged tubules by cimetidine showed enhanced ERbeta immunostaining. TUNEL-labeling was usually observed in the same germ cell types exhibiting enhanced ERbeta immunoreactivity.</p> <p>Conclusion</p> <p>The presence of ERbeta immunolabeling in the flagellum and residual bodies of spermatids reinforces the role of estrogen in spermiogenesis. The overexpression of ERbeta in the germ cells of CmG could be related to a possible interference of cimetidine on tubular androgenization and/or on the intratubular aromatase due to Sertoli cell damage. The parallelism between ERbeta overexpression and apoptosis indicates a participation of ERbeta on germ cell death.</p

    Isolation and characterization of all-trans-retinoic acid-responsive genes in the rat testis

    No full text
    By way of differential screening of testis cDNA libraries from vitamin A-deficient (VAD) rats before and after administration of all-trans retinoic acid (ATRA), genes, the transcription of which was influenced by ATRA, were isolated. Most clones with an increased transcription encoded different subunits of the same mitochondrial protein complex, cytochrome c oxidase (COX). The mRNA expression of COX increased by a factor 3.9 +/- 1.5 (mean +/- SD, n = 4). This increased expression seems to reflect an increased energy demand in the ATRA-supplemented VAD testis. Also, one gene was isolated, the transcription of which was reduced to about 70% by ATRA. This gene, sulfated glycoprotein 2 (Sgp-2), is a major secretion product of Sertoli cells, the function of which is still unknown. The effect of ATRA on Sgp-2 expression may be direct, since the promoter of Sgp-2 contains a putative ATRA-responsive element (RARE

    Effect of Retinoid Status on the Messenger Ribonucleic Acid Expression of Nuclear Retinoid Receptors alpha, ß,and y, and Retinoid X Receptors alpha,ß, and y in the Mouse Testis*

    No full text
    The testicular gene expression of the retinoic acid receptors, RAR alpha, -beta, and -gamma, was studied in normal mice and in vitamin A-deficient mice after the administration of all-trans-retinoic acid (ATRA). All three types of RARs were expressed in normal and/or vitamin A-deficient testes. Only the expression of RAR beta messenger RNA was transiently induced within 24 h after ATRA injection. ATRA-induced RAR beta expression was also found in purified Sertoli cells, suggesting that these cells mediate at least part of the effect of retinoids on germ cells. When an equimolar amount of retinol was administered instead of ATRA, no induction of RAR beta was seen at the point of maximal induction by ATRA, suggesting that the effect of retinol was delayed and probably less. The related nuclear receptors, RXR alpha, -beta, and, for the first time, gamma, were also shown to be present in the mouse testis. Upon administration of ATRA, messenger RNA expression of RXR alpha and -beta did not change significantly. The expression of RXR gamma was too low to allow quantification. Finally, the effect of the retinoid metabolism inhibitor liarozole on ATRA-induced proliferation of A spermatogonia was examined. The labeling index of A spermatogonia, 24 h after the administration of 0.25 mg ATRA, was significantly lowered by liarozole due to a shift of the maximal 5-bromo-deoxyuridine incorporation to an earlier point (20 h). This indicates that liarozole delays retinoid metabolism, thereby increasing the actual ATRA concentration, and more importantly, that ATRA by itself is an active retinoid in spermatogenesis. Apparently, ATRA does not need to be metabolized to 4-oxo-RA, which was previously shown to be a more potent inducer of spermatogonial proliferation than ATRA, to be effectiv

    Differential expression pattern of retinoid X receptors in adult murine testicular cells implies varying roles for these receptors in spermatogenesis

    No full text
    Retinoids have previously been shown to be crucial for normal spermatogenesis. The role of retinoic acid receptors has been studied, but relatively little is known about the function of retinoid X receptors (RXRs). To gain more insight in the function of RXRs during spermatogenesis, the cellular localization of RXRs in the mouse testis was examined using immunohistochemistry and RNase protection assays. In both normal and vitamin A-deficient (VAD) testes, a strong immune response to an RXRalpha antibody occurred in Leydig cells, peritubular myoid cells, and A spermatogonia. Weaker signals were found in spermatocytes and spermatids. In normal testes, an RXRbeta antibody gave a reaction in Leydig cells, and, to a lesser extent, in Sertoli cells, A spermatogonia, pachytene spermatocytes, and spermatids. In Leydig cells, a cytoplasmatic signal was found in addition to the nuclear signal. In the VAD testis, only Leydig cells and A spermatogonia were positive, which indicates that RXRbeta expression may be dependent on the retinoid status. Previous studies have shown RXRgamma mRNA expression in the mouse testis at a low level. Nevertheless, an RXRgamma antibody caused a strong immune response in interstitial cells and in A spermatogonia, and a weak signal in pachytene spermatocytes. These immunohistochemical data were supported by the results of RNase protection assays on mRNA of testicular cell isolations. In conclusion, the different RXRs in the mouse testis have distinct expression patterns, suggesting that they may have different function

    The effect of 9-cis-retinoic acid on proliferation and differentiation of a spermatogonia and retinoid receptor gene expression in the vitamin A-deficient mouse testis

    No full text
    Retinoid X receptors (RXRs) are key regulators in retinoid signaling. Knowledge about the effects of 9-cis-retinoic acid (9-cis-RA), the natural ligand for the RXRs, may also provide insight in the functions of RXRs. In this study, the effect of 9-cis-RA on spermatogenesis in vitamin A-deficient (VAD) mice was examined. Administration of 9-cis-RA stimulated the differentiation and subsequent proliferation of the growth-arrested A spermatogonia in the testis of VAD mice. However, compared with all-trans-retinoic acid (ATRA), relatively higher doses of 9-cis-RA were necessary. This could not simply be due to a lower or delayed activity of 9-cis-RA, as simultaneous administration of ATRA and 9-cis-RA did not cause a synergistic effect. Instead, the presence of 9-cis-RA diminished the effect of ATRA by approximately one third. Studies of in vivo transport and metabolism showed that ATRA and 9-cis-RA, after administration to VAD mice, penetrated the testis equally well. However, 9-cis-RA was metabolized much faster than ATRA, and other metabolites were formed. This may account for the above-described differential effects of ATRA and 9-cis-RA on spermatogenesis. Similar to ATRA, 9-cis-RA transiently induced the messenger RNA expression of the nuclear RA receptor RAR beta, suggesting a role for this receptor in the effects of retinoids on the differentiation and proliferation of A spermatogonia. In contrast, the messenger RNA expression of the nuclear retinoid receptors RXR alpha, -beta, and -gamma was not changed significantly by administration of their ligand, 9-cis-RA. Hence, 9-cis-RA does not seem to exert its effect on spermatogenesis through altered expression of the RXR

    Stem cells in reproductive medicine: ready for the patient?

    No full text
    Study question: Are there effective and clinically validated stem cell-based therapies for reproductive diseases? Summary answer: At the moment, clinically validated stem cell treatments for reproductive diseases and alterations are not available. What is known already: Research in stem cells and regenerative medicine is growing in scope, and its translation to the clinic is heralded by the recent initiation of controlled clinical trials with pluripotent derived cells. Unfortunately, stem cell ‘treatments’ are currently offered to patients outside of the controlled framework of scientifically sound research and regulated clinical trials. Both physicians and patients in reproductive medicine are often unsure about stem cells therapeutic options. Study design, size, duration: An international working group was assembled to review critically the available scientific literature in both the human species and animal models. Pparticipants/materials, setting, methods: This review includes work published in English until December 2014, and available through Pubmed. Main results and the role of chance: A few areas of research in stem cell and reproductive medicine were identified: in vitro gamete production, endometrial regeneration, erectile dysfunction amelioration, vaginal reconstruction. The stem cells studied range from pluripotent (embryonic stem cells and induced pluripotent stem cells) to monopotent stem cells, such as spermatogonial stem cells or mesenchymal stem cells. The vast majority of studies have been carried out in animal models, with data that are preliminary at best. Limitations, reasons for caution: This review was not conducted in a systematic fashion, and reports in publications not indexed in Pubmed were not analyzed. Wider implications of the findings: Amuchbroader clinical knowledgewill have to be acquired before translation to the clinic of stem cell therapies in reproductive medicine; patients and physicians should be wary of unfounded claims of improvement of existing medical conditions; at the moment, effective stem cell treatment for reproductive diseases and alterations is not available

    Fertility preservation for male patients with childhood, adolescent, and young adult cancer: recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group

    No full text
    Male patients with childhood, adolescent, and young adult cancer are at an increased risk for infertility if their treatment adversely affects reproductive organ function. Future fertility is a primary concern of patients and their families. Variations in clinical practice are barriers to the timely implementation of interventions that preserve fertility. As part of the PanCareLIFE Consortium, in collaboration with the International Late Effects of Childhood Cancer Guideline Harmonization Group, we reviewed the current literature and developed a clinical practice guideline for fertility preservation in male patients who are diagnosed with childhood, adolescent, and young adult cancer at age 25 years or younger, including guidance on risk assessment and available methods for fertility preservation. The Grading of Recommendations Assessment, Development and Evaluation methodology was used to grade the available evidence and to form the recommendations. Recognising the need for global consensus, this clinical practice guideline used existing evidence and international expertise to rigorously develop transparent recommendations that are easy to use to facilitate the care of male patients with childhood, adolescent, and young adult cancer who are at high risk of fertility impairment and to enhance their quality of life
    corecore