28 research outputs found

    Inhibitory control, but not prolonged object-related experience appears to affect physical problem-solving performance of pet dogs

    Get PDF
    Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject’s level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance

    Within-group relationships and lack of social enhancement during object manipulation in captive Goffin’s cockatoos (Cacatua goffiniana)

    Get PDF
    Different types of social relationships can influence individual learning strategies in structured groups of animals. Studies on a number of avian species have suggested that local and/or stimulus enhancement are important ingredients of the respective species’ exploration modes. Our aim was to identify the role of enhancement during object manipulation in different social contexts. We used focal observations to identify a linear dominance hierarchy as well as affiliative relationships between individuals in a group of 14 Goffin’s cockatoos (Cacatua goffiniana, formerly goffini). Thereafter, in an unrewarded object choice task, several pairs of subjects were tested for a possible influence of social enhancement (local vs. stimulus) in three conditions: dominance, affiliation, and kinship. Our results suggest strong individual biases. Whereas previous studies on ravens and kea had indicated that enhancement in a non-food-related task was influenced by the social relationship between a demonstrator and an observer (affiliated – nonaffiliated), we found no such effects in our study group. In this context, Goffin’s cockatoos’ object learning seems to take place more on an individual level, despite their generally high motivation to manipulate nonfood items
    corecore