14 research outputs found

    Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    Get PDF
    This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. Reproduced with permission, © ESO, 201

    Euclid preparation XLIII. Measuring detailed galaxy morphologies for Euclid with machine learning

    Get PDF
    The Euclid mission is expected to image millions of galaxies at high resolution, providing an extensive dataset with which to study galaxy evolution. Because galaxy morphology is both a fundamental parameter and one that is hard to determine for large samples, we investigate the application of deep learning in predicting the detailed morphologies of galaxies in Euclid using Zoobot, a convolutional neural network pretrained with 450000 galaxies from the Galaxy Zoo project. We adapted Zoobot for use with emulated Euclid images generated based on Hubble Space Telescope COSMOS images and with labels provided by volunteers in the Galaxy Zoo: Hubble project. We experimented with different numbers of galaxies and various magnitude cuts during the training process. We demonstrate that the trained Zoobot model successfully measures detailed galaxy morphology in emulated Euclid images. It effectively predicts whether a galaxy has features and identifies and characterises various features, such as spiral arms, clumps, bars, discs, and central bulges. When compared to volunteer classifications, Zoobot achieves mean vote fraction deviations of less than 12% and an accuracy of above 91% for the confident volunteer classifications across most morphology types. However, the performance varies depending on the specific morphological class. For the global classes, such as disc or smooth galaxies, the mean deviations are less than 10%, with only 1000 training galaxies necessary to reach this performance. On the other hand, for more detailed structures and complex tasks, such as detecting and counting spiral arms or clumps, the deviations are slightly higher, of namely around 12% with 60000 galaxies used for training. In order to enhance the performance on complex morphologies, we anticipate that a larger pool of labelled galaxies is needed, which could be obtained using crowd sourcing. We estimate that, with our model, the detailed morphology of approximately 800 million galaxies of the Euclid Wide Survey could be reliably measured and that approximately 230 million of these galaxies would display features. Finally, our findings imply that the model can be effectively adapted to new morphological labels. We demonstrate this adaptability by applying Zoobot to peculiar galaxies. In summary, our trained Zoobot CNN can readily predict morphological catalogues for Euclid images

    Carbohydrate characterization of quail primordial germ cells during migration and gonadal differentiation

    No full text
    A selection of lectins were used to study changes in the distribution of sugar residues in primordial germ cells (PGCs) during gonadal colonization and differentiation. Although the cytochemical characteristics of PGCs have been described in the chick, little is known about such characteristics in other avian species of interest to experimental biology. Therefore, we studied embryos of Japanese quail (Coturnix coturnix japonica) by light and laser confocal scanning microscopy, using the QH1 antibody as a tool to identify PGCs in both sexes and at all stages. LEA, WGA and RCA-I bound to PGCs in a similar way to QH1. LEA was the best marker for all stages. The presence of acid phosphatase and the intense reaction of LEA, WGA, RCA-I and WFA at the cell surface were shown to be a useful tool in the study of the migratory PGCs of the quail. Quails were sexed histologically in younger embryos than in chick; results were confirmed by PCR. The lectin-binding pattern changed drastically in differentiated gonads. Cell surface reactivity was almost entirely lost. Quail differentiating oogonia showed a characteristic binding pattern to QH1 and to the lectins WGA, RCA-I and WFA. Binding was observed in intense spots in the Golgi complex, and there was a specific PNA reaction. These results suggest that some selective sugar binding sites on the PGCs play a significant role in their migration, colonization and maturation

    β-Catenin expression during vascular development and degeneration of avian mesonephros

    No full text
    β-Catenin is a structural component of adherens junctions, a regulator of the Wnt signalling pathway and a transcriptional co-activator with a key role in vascular patterning. The avian mesonephros is a transitory embryonic kidney that is used in the study of vascular development and degeneration. Here we examine β-catenin expression in this model during vascular development and degeneration. Quail embryos with developing or degenerating mesonephros were studied, on day 6 (30HH) or day 11 of incubation (40HH), respectively. QH1 whole mounts of developing mesonephros revealed numerous angioblast-like cells situated in the paramesonephric duct that seem to invade the mesonephros. Although these cells did not express β-catenin, the surrounding periductal mesenchymal cells translocated high levels of β-catenin into the nucleus. In contrast, degenerating mesonephros were devoid of angioblast-like cells and β-catenin was lower than in the developing mesonephros. β-Catenin was significantly reduced in the glomerular capillary tuffs, indicating that it was particularly down-regulated in the vascular system. No sex-related differences in β-catenin expression were observed in degenerating mesonephros. Furthermore, two special populations of glomerular and peritubular endothelial cells were observed in degenerating mesonephros: one translocating β-catenin into the nucleus and the other in apoptosis that did not translocate it. In conclusion, our results indicate that the paramesonephric duct is a potential new vasculogenetic pathway, and suggest that β-catenin plays a role in the fate of mesonephric endothelial cells
    corecore