12,636 research outputs found

    Methacrylate peak determination and selection recommendations using ATR-FTIR to investigate polymerisation of dental methacrylate mixtures.

    Get PDF
    Investigation of polymerisation kinetics using ATR-FTIR systems is common in many dental studies. However, peak selection methods to calculate monomer-polymer conversion can vary, consequently affecting final results. Thus, the aim of this study is to experimentally confirm which method is less prone to systematic errors. Three commercial restorative materials were tested-Vertise Flow (VF), Constic and Activa Bioactive Restorative Kids. Firstly, Attenuated Total Reflectance Fourier Transform Infra-Red (ATR-FTIR) (Spectrum One, Perkin-Elmer, UK) spectra of monomers were acquired-10-methacryloyloxy decyl dihydrogen phosphate (10-MDP), bisphenol-A glycidyl dimethacrylate (Bis-GMA), 2-hydroxyethyl methacrylate (HEMA), triethyelene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) to investigate proportionality of methacrylate peak heights versus concentration. Spectral changes upon light exposure of 2 mm discs of the restorative materials (irradiated for 20 s, LED curing unit 1100-1330 mW/cm2) were assessed to study polymerisation kinetics (n = 3), with continuous acquisition of spectra, before, during and after light exposure. Peak differences and degrees of conversion (DC %) were calculated using 1320/1336, 1320/1350 and 1636/1648 cm-1 as reaction/reference peaks. Inferential statistics included a MANOVA and within-subjects repeated measures ANOVA design (5% significance level). Proportionality of methacrylate peak height to concentration was confirmed, with the 1320/1352 cm-1 peak combination showing the lowest coefficient of variation (8%). Difference spectra of the polymerisation reaction showed noise interference around the 1500-1800 cm-1 region. Across the different materials, DC % results are highly dependent upon peak selection (p<0.001), with higher variability associated to the 1636 cm-1. Significant differences in the materials were only detected when the 1320 cm-1 peak was used (p<0.05). Within the same materials, methods were significantly different for Constic and Activa (p<0.05). It is possible to conclude that the 1320 cm-1 peak is more adequate to assess polymerisation of methacrylates and is therefore recommended

    Modelling ATR-FTIR Spectra of Dental Bonding Systems to Investigate Composition and Polymerisation Kinetics

    Get PDF
    Component ratios and kinetics are key to understanding and optimising novel formulations. This warrants investigation of valid methods. Attenuated Total Reflectance Fourier Transform Infra-Red (ATR)-FTIR spectra of separate primers/adhesives were modelled using summed spectra of solvents (water, ethanol), methacrylate monomers (HEMA (hydroxyethyl methacrylate), Bis-GMA (bisphenol A glycidyl methacrylate), and 10-MDP (10-methacryloyloxydecyl dihydrogen phosphate)), and fillers, multiplied by varying fractions. Filler loads were obtained following their separation from the adhesives, by analysing three repetitions (n = 3). Spectral changes during light exposure at 37 °C (20 s, LED 1100–1330 mW/cm2) were used to determine polymerisation kinetics (n = 3). Independent samples T-test was used for statistical analysis (significance level of 5%). FTIR modelling suggested a primer solvent percentage of OBFL (Optibond FL) (30%) was half that of CFSE (Clearfil SE 2) (60%). OBFL included ethanol and water, while CFSE included only water. Monomer peaks were largely those of HEMA with lower levels of phosphate monomers. OBFL/CFSE adhesive model spectra suggested that both contained equal volumes of Bis-GMA/HEMA, with CFSE having 10-MDP. Filler levels and spectra from OBFL (48 wt.%) and CFSE (5 wt.%) were different. Both systems reached a 50% conversion rate within seconds of light exposure. The final conversion for OBFL (74 ± 1%) was lower compared to CFSE (79 ± 2%) (p < 0.05). ATR-FTIR is a useful method to investigate relative levels of main components in bonding systems and their polymerisation kinetics. Such information is valuable to understanding such behaviour

    Judges and judging in the Court of Final Appeal: a statistical picture

    Get PDF
    The authors provide a unique perspective on how the Court of Final Appeal has operated from 1997 to 2010. The study tracks the rising caseload in the Court, considers the statistical profile of the new system of judges and notes the greater attention being paid by the final court to public law cases.published_or_final_versio

    Modifying dental composites to formulate novel methacrylate-based bone cements with improved polymerisation kinetics, and mechanical properties

    Get PDF
    Objectives: The aim was to develop bone composites with similar working times, faster polymerisation and higher final conversion in comparison to Cortoss™. Additionally, low shrinkage/heat generation and improved short and longer-term mechanical properties are desirable. Methods: Four urethane dimethacrylate based composites were prepared using tri-ethylene-glycol dimethacrylate (TEGDMA) or polypropylene dimethacrylate (PPGDMA) diluent and 0 or 20 wt% fibres in the glass filler particles. FTIR was used to determine reaction kinetics, final degrees of conversions, and polymerisation shrinkage/heat generation at 37 °C. Biaxial flexural strength, Young's modulus and compressive strength were evaluated after 1 or 30 days in water. Results: Experimental materials all had similar inhibition times to Cortoss™ (140 s) but subsequent maximum polymerisation rate was more than doubled. Average experimental composite final conversion (76%) was higher than that of Cortoss™ (58%) but with less heat generation and shrinkage. Replacement of TEGDMA by PPGDMA gave higher polymerisation rates and conversions while reducing shrinkage. Early and aged flexural strengths of Cortoss™ were 93 and 45 MPa respectively. Corresponding compressive strengths were 164 and 99 MPa. Early and lagged experimental composite flexural strengths were 164–186 and 240–274 MPa whilst compressive strengths were 240–274 MPa and 226–261 MPa. Young's modulus for Cortoss™ was 3.3 and 2.2 GPa at 1 day and 1 month. Experimental material values were 3.4–4.8 and 3.0–4.1 GPa, respectively. PPGDMA and fibres marginally reduced strength but caused greater reduction in modulus. Fibres also made the composites quasi-ductile instead of brittle. Significance: The improved setting and higher strengths of the experimental materials compared to Cortoss™, could reduce monomer leakage from the injection site and material fracture, respectively. Lowering modulus may reduce stress shielding whilst quasi-ductile properties may improve fracture tolerance. The modified dental composites could therefore be a promising approach for future bone cements
    • …
    corecore