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Summary

A regression model is considered in which the response variables
have gamma distributions with a common shape parameter. A review is
given of existing estimators for the shape parameter. Bias expressions
for the maximum likelihood estimates of the regression coefficients
and the shape parameter are developed. A new estimator for the shape
parameter based on bias correction for the maximum likelihood estimator
is shown to have markedly better variance and mean square error pro-
perties in small to moderate sized samples. Approximations to the low
order moments of the Pearson statistic are derived for gamma regression
models with general link functions. These are used for the case of a
logarithmic link to develop new estimators for the shape parameter which
have better moment properties than the estimators based on the Pearson
statistic which have been used previously. Finally, the small sample
variance and mean square error efficiencies of the estimators relative
to the maximum likelihood estimator are evaluated by simulation for the
case of a single explanatory variable and a logarithmic link, for a
range of sample sizes less than or equal to 100.
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1. INTRODUCTION

We consider a regression model in which the response variables

Yi,...,Y, are independent gamma r. v. 's where Y; has density
0
1 (0] o Oy
f-(Y)Z—(—J y eXp(—— , y>0 (L.1)
1 () u i

where 6 > 0, nu; > 0. We have E(Y;) = u; and if py (Yi) denotes the vth

central moment of Y;,

2 3 4 5
i 21 3t (0+2 400 (50 +6
uz(mJg, MYi):%, na( =Dy 2 040
(1.2)

1
The skewness and kurtosis coefficients are y,=20 2, andy, =60,

respectively. When 0 = 1 the densities are exponential, and as 8 > ©

the densities approach the normal.

Since the shape parameter 0 is assumed to be constant for all
observationls, each observation has the same coefficient of variation
equal to @ 2 This contrasts with the classical linear model which
assumes that the variance of the response is a constant independent
of the mean.

For the ith individual, we let x;;, ...,Xijx denote values on k
non-random regressor variates.The regression model for the mean response

1s written as

gup)=X B, i=1...n (1.3)

where )N( :(I,Xil,....,Xik), @ =(Bg,By>-----Bx) 1s a vector of unknown
1
regression coefficients and g(e) is the link function. Two functions

that are commonly used for gamma regression are the reciprocal link

ui_l :X'B and the logarithmic logui:)g‘[?l The first function

1
provides the canonical link which yields sufficient statistics which

are linear functions of the observations (McCullagh and Nelder (1983)),
but has the disadvantage that restrictions on 3 must be imposed to

ensure that p; >0. The second link assumes that the effects of the



regressor variates are multiplicative and it maps the range of p; on

to the whole real line.
Estimates for  and pi:g_l(?v(i B), i=1,...,nare usually found
1

by maximum likelihood (ML) . The ML estimator B is the solution of

~

the likelihood equations

ZL(ﬁ_lj(%j =0, r=01,....k (1.4)
B=p

T OB,

for any 0. The covariance matrix of the parameter estimates is approx-

-1
cov, (B)zeluz ! %%D . (1.5)

T 1} OBr 9B

imated by

Inference for B is usually based on a standard large sample ML

~

A

approach, taking B to have an approximate multivariate normal dis-

~

~ ~

tribution with mean B and covariance matrix cov, (f&) Usually 6 is

unknown and must be estimated. McCullagh and Nelder (1983) consider
a number of estimators. The first is the ML estimator © which is the
solution of

2n{10gé —\p(é)} =D
where y(X)=dlogl'(X)/dx is the digamma function and D is the

deviance statistic given by

D=2) {mg[%J + 1 — 1}. (1.7)

i i
The deviance D is proportional to twice the difference between the
maximum attainable value of the log-likelihood when no model is imposed
on the {ui} and the log-likelihood under the fitted gamma regression

model, when 0 is treated as known. Nelder and Wedderburn (1972) show
that D simplifies to ZZlog(ﬁLi /Y;) under the power link ui}‘ 22(9 and
i 1

the logarithmic link.



An exact solution for 0 satisfying (1.6) has to be found iteratively.

Putting D; = D/(2n), Greenwood and Durand (1960) give the approximations

6 = D;'(0.5000876 +0.1648852D, —0.0544274D?) , 0 < D, < 0.5772
8.898919 +9.059950D, +0.9775373D7
D, (17.79728 +11.968477D, + D?)

D>
Il

, D, < 0.5772. (1.8)

The maximum errors in these approximations are claimed to be 0.0088%
and 0.0054%, respectively, which for all practical purposes are
negligible.

Using the asymptotic formula

1 1 1 1
y(X)=logX—-——- + +0(—j , (1.9)
2X  12x%  210%x* x©

if 6 is sufficiently large and terms of order 672 are ignored, an

estimator providing a simple approximation to 0 is
6, =nD! (1.10)
From Cordeiro (1983), the expectation of the deviance statistic
is
E(D) =2n{log0—y(®)} —(k+1)0 ' +0(n™") (1.11)

where the term of order n' depends on the link function and the
x-configuration. Cordeiro gives an explicit representation for this
term for the power family link and the logarithmic link. Equating D
to its expected value correct to 0(1), McCullagh and Nelder (1983)

suggest that an improvement to the ML procedure is to use the estimator

éz given by the solution of
2n{logf, —y(0,)} —(k+1)65' =D (1.12)
If terms of order égz are ignored, the estimator
6; =(n—k-D)D! (1.13)

provides an approximation to 6, and removes the need for iteration.



The final estimator proposed by McCullagh and Nelder is the
moment estimator
8, =(n—-k-DT! (1.14)
where T :Z{(Yi —ﬁti)/ﬁti}z is the Pearson statistic for the gamma

1
regression model. This estimator has the advantage of being much
less sensitive to very small observations for the response variable
than the estimators based on the deviance which is infinite if any
observation is zero.
In this report, we propose a number of alternative estimators
for the shape parameter and compare their moment properties with

those of the commonly used estimators é,é3 and é4. In section 2,

bias approximations to the ML estimators of the regression coefficient
vector  and 6 are given for the gamma regression model with a general

link function. In section 3 the biases are used to provide bias
corrected estimators for 6 which are shown to have much better bias,
variance and mean square error properties than the ordinary ML estimator.
Expressions for the mean and variance of the Pearson statistic to 0(1)
and O(n) respectively, are derived in section 4. The results are used
in section 5 to examine the properties of a class of estimators

(n-a)T"' where a is a constant. It is shown that simple modifications
to the estimators based on bias correction leads to estimators with
markedly improved bias, variance and mean square error properties.
Finally in section 6, we report the findings of a large scale simulation
investigation into the small sample properties of the estimators for
the shape parameter under the logarithmic link.

2. BIAS APPROXIMATIONS FOR THE ML ESTIMATORS

Bias approximations for the ML estimators to order n' can be found

applying general results given by Cox and Snell (1968). Define

dlog f; (Y;) v = 0° log £;(Y;) w) 0° log f; (Y;)
aBr B aBraBs ° aBraBséBt

where for notational convenience we set B =0. A straightforward

Ul = (2.1)

calculation gives



Ul - i%(ﬁ _ 1] 2.2)
M aBr M
U =logh—y(0)+ 1og[£j - (ﬁ - 1} (2.3)
i My
. 2 . . . . .
v _g) L Ok (L_IJ_LZ%% [zi_lJ (2.4)
My aBraBs M o8] aBr aBs My
i 1o (E‘IJ 03
My aBr M
Vi =67~y (e) (2.6)
wi _ OYi | 4 oui opi Oui  Oh O’w  ow Ow o ol
S w? | 0B, OB OB, OB, OB.OB, OB OB,OB, OB, OB, OBy
. 2 2 . . .
+e(£—1] orjL o 1 0wion 2.7)
Hi By |1 BrOBs  pi OBy P
. 2 . . . . .
wi = L&(L_IJ_%% %(2£_1j (2.8)
My aBraBs My LY aBr aBs My
Wi =0, Wigy =—{67 +py @ (o)} 2.9)
forr,s,t=0,1, ...k, where \VV (0) is the vth derivative of the

digamma function. Set

Ly =B - > VP |, K =E> W% o =E YUV 2.10

S Z 1S > st z rst |° 1,St Z r st | ( . )
i i i

The elements in the information matrix are

1 Oy Oy, 0 -1
Ly=0) ——+—+, Lg=0, lgg=nfy ' (0)-0"} (2.11)
’ leulz aBr aBs

forr, s = 0,1, ... ,k. Itis seen that the estimates of the regression
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1

2

coefficients are asymptotically independent of 0. Also to order n’

we have

var(@) =n "y V(@) -0 11! (2.12)

which is independent of the link function for p;. Our later results
show that (2.12) gives a serious underestimation of the variances
even for moderate sized samples, under the logarithmic link. For

the K functions we have

2 2 2
Krstzez%{iaui Oui Opi Oy O07py  Ouy 07wy Ouy 07 } (2.13)

Tl (M OBy OB OBy OPB; IPsOP;  OBs POy OBy PPy
1 ou; Ou; _
Ko =2 — O  Kyup=0, Kggg =087 +y?(0)] (2.14)
i Ky aBr aBs
forr,s,t=0,1,...,k. For evaluation of the J functions we use
the result that
\%
Y; Y, V-1
Eq| —| logl — [ ={(0)0"} {d['(6+V)/dO—1ogbI'(6+V)} (2.15)
i i
and obtain
2
Jr’st :ez%aul a H‘l _iap’l a“l (216)
i Ky aBr aBsaBt My aBs aBt
Jr,se = %%% > (2.17)
i By aBr aBs
Jr00 =Jost =Jos0 =Jo,00 =0- (2.18)

From Cox and Snell (1968), we have to order n’

1 0
b, =§Z > T (K +2T (g0) (2.19)
S t u



where I'° denotes the element corresponding to B, and Bg in the inverse
of the information matrix. Each summation in (2.19) is over the values
0,1,.....k. . since I' = 0 forr = 0,1,..... k and Ji gy =-Koty =07 1y

we obtain

100 ple < 00
béZEI {e > 1M, + 17K ggg

t=0 u=0
B 1 el e2\‘](2) 0)+1 (2.20)
2n {0y (0) -1} oy @©-1]

For the estimates of the regression coefficients the biases

b, =E(f3r)—[3r to order n' are given by

k k k
z DTIEIM Ky +2) 1) > 1=0,1,.. k. (2.21)
s=0 t=0 u=0

l\)l»—ﬂ

For the logarithmic link, these biases take on particularly simple

forms if it is assumed that the x’s satisfy the centreing conditions

> X =0 forr=1,...k. (2.22)
i

In this case 1 =0for r=1,....k and K, = —Jisu :GZXinitxiu
and we obtain

(k +1) I & S sy gt
boz——2 0 r=—%z z ZM M insxitxiu (2.23)
n s=1 t=1 u=l i

forr=1,....k, where M'® denotes the (r, s) th element in the

inverse of the sum of cross products matrix M=((inrxis)).
i
the case of a single regressor variate we have

b, :—(29)_1{27413/(2);12)2} which is zero if the x values are equally
i i

spaced.
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3. BIAS CORRECTED ESTIMATORS FOR THE SHAPE PARAMETER

From (2.20) and (2.12), the bias and variance of the ML

estimator of the shape parameter to order n”' may be written as

by =n""h;(6), var(6)=n""h,(0) (3.1)
where

o= 2{ew<”l<e) -1 {k o %} oY

h,(0) = fy V(@) -07"} . (3.3)

The approximating bias depends only on n, 6 and the number of
regressor variates k and is independent of the link function for
the mean and the values of the regressor variates. If 0 is large,

then using the expansions

oy D (©0)-1=20)"" +(60%)' +0(6™) (3.4)
oy @ ©0)+1=-0""—(20%)" +0(67*) (3.5)

and neglecting terms 0(0°%), we obtain

(3.6)

by :n_l{(k+3)9—k+2 k+l}

+—
3 90

When k = 0, this bias reduces to that given by Bowman and
Shenton (1968) for the case when no regressor variates are

present.
Making a direct correction for the bias of 0, we are led to

consider the estimator
65 =0-n""h,(0) (3.7)

or neglecting terms of O(é_z), the estimator

96=@)(1—k+3j+k+2—(k+}). (3.8)
n 3n 9n0

The bias of 65 is 0(n~?).
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We now compare the variance and mean square error properties

of the estimators és and 66 with those of the ML estimator. To do

this it is convenient to consider a general estimator of the form
0" =0+n'a®) (3.9)
where a(é) is a function of @ which is independent of n. We have
bg. =by +n"'a(0) +0(n?). (3.10)
Since var (0°) = var (0) + 2n"' cov(0,a(®)) + 0(n">) and
cov(0,a(0)) = a'(0) var(0) + 0(n2), we obtain
var() — (var(®”) = —2n2h, (0)a'(8) + 0(n ). (3.11)
The proportionate reduction in the variance to 0(n’') is
Ry (0) = —2n""a'(®). (3.12)
Using (3.10) and (3.11) we obtain
mse (0) —mse (67 ) = —n"2[2h, (0) + a(0){2h,(0) + a(8)} |+ 0(n ). (3.13)

The proportionate reduction in the mean square error to 0(n’")
is
R (8) = —n "' 2a'(0) + a(6){2h, (6) +a(0)}h5' (0) ] (3.14)
Values of nRy (6) and nR,, (6) given by (3.12) and (3.14),
respectively are shown in table 1 for the estimator és, putting

a(0) =-h(0) for 6 = 0.25(0.25)1.00(0.50)3.00(1.00)6.00 and

k =1,2,3,4. The corresponding values for é6, putting

a(e):—(k+3)6+§(k+2)—%,are shown in Table 2.
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Table 1

Values of nR, (6) and nR,, (0) for the estimator és-

0
0.25
0.50
0.75
1.00
1.50
2.00
2.50
3.00
4.00
5.00
6.00

0
0.25
0.50
0.75
1.00
1.50
2.00
2.50
3.00
4.00
5.00
6.00

k=1
5.86
6.80
10.08
7.55
7.78
7.88
7.92
7.95
7.97
7.98
7.99

k=1
0.89
6.22
7.21
7.56
7.80
7.89
7.93
7.95
7.97
7.98
7.99

R (6)

k=2 k=3

7.25 8.64
8.42 10.03
12.25 14.42
9.37 11.20
9.69 11.59
9.82 11.76
9.88 11.85
9.92 11.89
9.96 11.94
9.97 11.96
9.98 11.98

R, (6)

k=2 k=3

-0.67 -2.22
7.33 8.44
8.81 10.42
9.33 11.11
9.70 11.60
9.83 11.78
9.89 11.86
9.93 11.90
9.96 11.94
9.97 11.96
9.98 11.98

k=4
10.03
11.65
16.58
13.02
13.50
13.71
13.81
13.87
13.93
13.95
13.97

Table 2
Values of nR, (6) and nR,, (0) for the estimator

k=4
-3.78
9.56
12.02
12.89
13.51
13.72
13.82
13.88
13.93
13.96
13.97

k=1
11.07
12.77
17.65
14.31
14.92
15.22
15.39
15.51
15.64
15.72
15.77

=1
5.21
12.19
14.67
14.32
14.94
15.23
15.40
15.51
15.64
15.72
15.77

R, (6)
k=2 k=3
15.27 20.09
17.58 23.07
23.68 30.51
19.76 25.99
20.68 27.27
21.15 27.95
21.44 28.36
21.62 28.64
21.85 28.99
21.98 29.19
22.07 29.33

é6.

R, (6)
k=2 k=3
4.45 3.13
16.48 21.44
20.12 26.36
19.72 25.90
20.69 27.28
21.17 27.96
21.45 28.38
21.63 28.65
21.85 28.99
21.98 29.19
22.07 29.33

k=4
25.51
29.24
38.13
32.99
34.69
35.61
36.18
36.56
37.05
37.34
37.53

k=4

1.27
27.07
33.39
32.86
34.69
35.62
36.19
36.57
37.05
37.34
37.53
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The results in tables 1 and 2 have to be used with caution,
particularly if n is not large, since terms 0(n ) will not be
negligible. They are clearly not applicable if nR, (6) > n or
nR, (6) >n. However, simulation results given in section 6 for the
case k=1 with a logarithmic link function, suggest that they pro-
vide a useful guide for n > 50.

The results indicate that the difference in variance and mean
square error performance between the bias reduction estimators és

and 6, will be negligible for 6>1.0. The estimator 05 will have

a markedly better performance than the uncorrected ML estimator
6 for all values of . The same is true of é6 except at very small

values of 6. Forn =50, k =1 and 6> 1, proportionate reduction
in variance is approximately 16% and the proportionate reduction
in mean square error is approximately 30%. With k = 4, these per-
centages rise to 27% and 70%, respectively.

Finally, we consider the bias and variance properties of the
estimators él =nD™! and é3 = (n-k-1)D"'. The expectation of D

to 0(1) is given by (1.1). To order n”', var{log é—\u(é):nhz(é)}_l.
Use of (1.6) gives to order n

var(D) =4n/h,(0). (3.15)
Using the approximation

E(6,) = n{E(D)} ' {1+ var(D)/E* (D)} (3.16)

the bias of 6, to order n' is

Lo n(O) [k+1 n(6)
b, = m(®) -0+ - {29 +h2(9)} (3.17)

where n(9)={log9—\|/(9)}_l. A similar approach gives the bias

of 0; to order n”' as

L n°0) [k+1  m®) | (k+DHn(®)
by, =5 M(O) =0+ - {29 +h2(9)} o (3.18)

To order n'l,
var(0,) = var(0;) =n*(0)/{4nh, (0)}. (3.19)
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From (3.17) and (3.18), it is seen that the estimators él and
63 are not asymptotically unbiased, the biases approaching %n(e)—e
asn—>o. Use of (3.19) and (3,1) shows that the asymptotic variance
efficiency of él and é3 relative to the ML estimator 6, which is

asymptotically unbiased, is
E{) = 4h3(0)/n* (0). (3.20)

Values of the asymptotic biases of él and é3 are shown in table 3

and values of the asymptotic variance efficiencies Eg) are given

in table 4 for 6 = 0.25(0.25)1.00, 1.50,2.00,3.00,4.00(2.00)10.00.

The asymptotic bias is negative for all 9 and is approximately
-0.16 for 6>2. The asymptotic variance efficiency Eg) is a

decreasing function of 6 and approaches 1 fairly rapidly.

Table 3

Asymptotic biases of estimators él and é3

0: 0.25 0.50 0.75 1.00 1.50 2.00
1
En(e) -0: -0.074 -0.106 -0.124 -0.134 -0.145 -0.151
0: 3.00 4.00 6.00 &.00 10.00
1
511(6) -0: -0.156 -0.159 -0.161 -0.162 -0.164
Table 4

Asymptotic variance efficiency ofél and 63 relative to 0
0: 025 050 075 1.00 150 2.00 3.00 4.00 6.00 8.00 10.00

E(el): 1.496 1.210 1.298 1.068 1.031 1.017 1.007 1.004 1.002 1.001 1.001
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4. APPROXIMATIONS TO THE EXPECTATION AND VARIANCE
OF THE PEARSON STATISTIC

In this section, we obtain expressions for E(T) to 0(1) and var(T)

to 0(n) which will be used in the next section to examine moment pro-
perties of estimators for 6 based on T. The expressions are derived

applying general results given by Cox and Snell (1968).

Define
Y. Y Yy Y
Ri:(Ai_lj =hi(YiaB)> Si:(_i_lj =h,(Y;,B) 4.1)
W - M h
and let
. oh; (Y;.B) \ 0%h;(Y;.B)
& (N ¢ {(0 42
' OB, ° OB 0Bs 2

Since the {¢;} are independently and identically distributed, we
have to 0(n")

E(R;) = E(g; )+Zb E(H(‘))+Z ZI“E(H(‘)U(‘) +— H(l)) (4.3)
r=0 r=0 s=0

where b, is the bias of ﬁr correct to 0(n™') . We have

i 2(Y; —1)Y; oy
sz— (Y; 3“) 16111 (4.4)
My Br
pd  _2YiGYi-2u) duj i 2Yi(Yi-pi) 0% @5)
Th Py Pg T By B
1) 0(Yi—wm) oy
Ug) _ ( 12 Hi) Oy (4.6)
Ky B
A straightforward calculation yields
ey 2 % gy US(1))2_2(2+29) opi Ouj @7
Ou; OB, Ou;  OBr OBg
C A 2.
p) - 204000 o 2 O 49)

6“12 aBr aBs el'li aBraBs.
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Using (4.3), we have to O(n'l)

eu% OB 6“i aBraBs

n
Since T = Z R; and using the result

=1

KX 1 ou; ou; - s _
| R Y Rl I ST =0"(k+1

r=0 r=0 i r=0 alls

we obtain to 0(1),

n (k+1)@O+1) 2 10y 1 %y
ET)=—-+—"2"""7_= s
0 02 Z(:) rzi: i Pr erz(:) SZ(:) le M aBr 6[38

we now consider two special cases

a) Logarithmic Link

For the link logui:)i%ﬁ,we have

2
1 O _ -1 0w _
K OB, =Xiro By o, 0P, = Xir Xis » Irs_eZ: Xir Xis

giving

if Z Xjp = 0 for r =1,....k then by = —(k +1)/(2n0)

n_ (k+D)O+1)
E(T) = 9 —9 >
to 0(1)

b) Power Link

For the power link “1 =X 13 we have

—1 O _ Xjr -1 azui (A = DxjrXig XlI’XIS
My ~n > Mg == ’ =0
boopr ol OBy oPs 2 2u3h Z

. k k ) 2 .
GL I {(He) oui , 1 aul} 49)

(4.10)

4.11)

(4.12)
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giving

E(T)zg_(k+l)(62+2—k) i brler
6 6 =i

To find the leading term of O(n) in var(T)., we write
E(R;)=0"+a;where aj is 0(n™') and given by (4.9). To 0 (1)
we have

var (R;) = var (gj) =3(0+ 2)9_3

and to O(n ) we have

k k . . . . . .
cov RpRy) =D > 1efe; 1Y) u W +st§1) v +H(r1) iy

r=0 s=0

A straightforward calculation gives

BeHO U0 )= 487 0 A gDy i) ) 487 A Oy
i o gy RS R e

and hence

rS
cov (Ri,Rp = £ HIMi 0%,
r s

Hi KjOBr P
Hence
var(T) =2 var(R))+ 2 2, cov(Ri,Rj)
1 1]
(e+3)_ii i {“ 1%][“ 1%]
0% /20 =0 \ia MiOB \iT mioBs
to O(n).

For the logarithmic link function with the x's centred such that

> Xir:O for r=1,.....k, we obtain
1

var(T) = 2_1;(6 +1)+0 (1)

No useful simplification occurs for the power link.

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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5. ESTIMATORS FOR 9 BASED ON THE PEARSON STATISTIC

In this section, we shall restrict attention to the gamma regression
model with a logarithmic link and assume, without loss of generality,

that the repressor variables are centred such that 2, x;. =0 for
1

r=1,....k . We consider a class of estimators which include the

McCullagh-Nelder estimator @4 as a special case. It is shown that

simple bias adjustments to the estimators leads to estimators with
markedly better bias, variance and mean square error properties in
small to moderate sized samples.

Consider the estimator
A -1
0(a) =(n—-a)T (5.1)

where a is a constant which is small compared with n. Using the

standard approximations
E{0(a) }~ (n—a){E(T)}" -+ var(T)/EX(T)} (5.2)
var{0(a) } ~ (n—a)’var(TYE*(T), (5.3)

then from (4.12) and (4.18) we obtain to 0(n™"),
E{0(a) }=0[1+n ' {(k+3)0+1)0" —a}] (5.4)

var {0 (a)}=20 (0+1)/n (5.5)

Use of (2.12) and (5.5) shows that the asymptotic variance efficiency
of é(a) relative to the ML estimator 6 is

E®) =[2(0+1)oy"(0)-1f]". (5.6)

The efficiency is independent of the number of regressor variables
and their values and so is equal to the efficiency of the method of
moments estimator relative to the ML estimator when no regressor

variables are present.
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Values of E, are shown in table 5 for 6 = 0.25(0.25)1.00,1.50,

2.00,3.00,4.00(2.00)10.00. The results show that the efficiency is
low for small values of 6 and increases relatively slowly as 6 increases.

Table 5

A

Asymptotic variance efficiency of é(a) relative to 0

6 025 05 075 1.00 1.5 200 3.00 4.00 6.00 8.00 10.00
E(ez) 0.12 023 0.34 039 050 057 0.68 074 0.81 0.85 0.88

The variance and mean square error properties of the estimator
é(a) can be substantially improved in small samples by adjusting for

bias which to 0( n™') is
by =1 {lk+3-a)p+k+3} (5.7)
The bias corrected estimator is
0"(a)= é(a){l—n—l(k+3 —a}—n‘l(k +3) (5.8)
with
bgr() = by (a)—n_l{(k+3—a)9+k+3} (5.9)

which is 0(n 2 ) and

Var{é*(a)}: {1 —n! (k +3- a)}z Var{é(a)}. (5.10)

The correction leads to an increase in variance when a>k+3.
Assuming that 0<a<k+3, the proportionate decrease in variance is

R,(a)=n"(k+3-a)2-n"(k+3-a)} (5.11)

v

For the McCullagh-Nelder estimator 64,Rv(k+1)=4n_1(1—n_1) showing

a 19% decrease in variance when n = 20 and a 7.8% decrease when n = 50.
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When a = 0, the bias corrected estimator is

0, =(n—k-3)T"—(k+3)n"". (5.12)

A

The proportionate decrease in variance using 0, instead of the

uncorrected estimator n/T is

R,(0)=n"(k+3)2-n"(k+3)} (5.13)

v

When k = 1 there is a 76% decrease in variance when n = 20 and a 15%
decrease when n = 50. The percentage decreases become substantially

larger as k increases.

The estimator é7 provides a good approximation to the minimum

variance estimator within the class of bias corrected estimators
{0*(a)}. This is seen by writing

B (a)f=ca (k)04 —(k+3)n ", (5.14)

where

c,(nk)={n-a)n-k-3+a)}/{n(n-k-1)}
2 aa—k-3)

- - . 5.15
n—-k-1 n(n—k—l) ( )
To order n? , c,(nk)c is independent of a and 0" a)zé7.
The proportionate decrease in variance using é7 instead of
the McCullagh-Nelder estimator 0, is
R, (n,k)=4(n-k-2)/(n—k-1)%. (5.16)

Table 6 gives values of R, (n,k) for n = 10(10)40(20)100 and k = 1(1)4.
To order n'l,Rv(n,k):4n_1 and it is seen that this approximation

works well for n > 20.
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Table 6

Values of the variance reduction factor R (n,k) for comparing é7 with 0,

k\ n 10 20 30 40 60 80 100
1 0.438 0.210 0.138 0.102 0.068 0.051 0.040
2 0.490 0.221 0.143 0.105 0.069 0.051 0.041
3 0.556 0.234 0.148 0.108 0.07 0.052 0.041
4 0.640 0.249 0.154 0.111 0.071 0.053 0.042

The proportionate reduction in mean square error through using
0, instead of 0, is to order n',

Rm(n,k)=4n‘1[1+(20+k+3)2/{80(e+1)}J (5.17)

Values of nR,(n,k) are shown in table 7 for = 0.25(0.25)1.00(0.50)

3.00(1.00)6.00 and k =1 ,2,3,4. When k =1, n = 50, the values of
R, (n,k) are 0.41,0.26,0.15 for ® = 0.5,1.0,4.0, respectively. When

k=3, the corresponding values rise to 0.73, 0.40 and 0.18, respectively
The results indicate the marked gains to be had from using é7instead

A

of the estimator 0,.

Table 7

Values of the mean square error reduction factor nR,,(n,k)

\9 0.25 0.50 0.75 1.00 1.50 2.00 250 3.00 4.00 5.00 6.00

36.40 20.67 15.52 13.00 1053 933 863 817 7.60 7.27 7.05
52.40 28.00 20.10 16.25 12.53 10.75 9.71 9.04 823 775 7.44
71.60 36.67 25.43 20.00 1480 1233 1091 10.00 8.90 8.27  7.86
94.00 46.67 31.52 24.25 17.33  14.08 1223 11.04 9.63 8.82  8.30

S S
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6. MONTE CARLO RESULTS

In the previous sections, we have considered several alternative
estimators for the shape parameter 8 under the logarithmic link
function. Theoretical approximations to their biases and variances
were developed and used to compare the variance and mean square
error properties of the estimators.

In order to assess the adequacy of the theoretical approximations,
a large Monte—Carlo study was made for the case of a single explanatory
variable with equally spaced x values, the model for the means being

M ZCXp(BO +Bixi)a i=1,..,n (6.1)

with x;=i-1(n+1)(>x; =0} Since the distributions of

[3—[3 and 0 are independent of B, values B, =B, =0 were used without

~

loss of generality. Values 6 =0.5(0.5)2.0,3.0,4.0 were used for
the shape parameter. For integer 6 with p, =1, the density of Y;
.is the special Erlangian distribution and the observation on Y;
can be generated as the sum of 6 independent standard exponential
observations. For the half integer values of 6 , the observation

on Y; . was generated as the scaled sum of squares of 20 N(0,1)

observations, using the result that Y;~ X%e /(26) . Sample sizes

n =10,20,30,50 and 100 were used in the investigation. The run size
was 2000 in each case and calculations were performed using the
statistical package GLIM.

Table 8 shows the values of tzj/{n’lhl(e)}, where b is the
simulation estimate of the bias of 6 and n~'h,(8) is the approximating

bias given by (3.2) . The results show that the actual biases are
considerably larger than the approximate biases given by (2.20).

For n=10, the biases obtained by simulation were more than 50%
higher than the approximate biases. With increasing n, the agreement
between the approximate biases and biases obtained by simulation
improved rapidly and the results suggest that (2.20) may be safely
used when. n >50.
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Table 8
Values of the ratio ngé/hl(e)
& n 10 20 30 50 100
0.5 1.89 1.34 1.08 1.10 1.21
1.0 1.71 1.19 1.20 1.01 0.94
1.5 1.73 1.17 1.20 1.04 1.00
2.0 1.56 1.20 1.17 0.99 1.00
3.0 1.66 1.23 1.21 1.07 1.10
4.0 1.56 1.29 1.14 1.12 1.11

able 9 shows the values of Var(é)/{n_lhz(e), where Vﬁr(é)

is the simulation estimate of Var(é) and n"lhz(e) is the approximating

variance given by (3.3). The results show that the first order
approximation to the variance of the ML estimate given by (2.12)
seriously underestimates the variance in small to moderate sized
samples. When n = 20, the variances obtained by simulation are
more than double the approximating variance. For n= 100, the values
are approximately 15% higher. These results indicate that second

A

order approximations to Var(e) as well as bias correction for 6 are

needed for the approximating inference procedures for 6 to be
satisfactory in small samples.

Table 9
Values of the ratio n Var(é)/ h,(8),
0 n 10 20 30 50 100
0.5 4.42 2.03 1.35 1.26 1.14
1.0 5.97 2.18 1.66 1.25 1.14
1.5 6.37 2.26 1.84 1.29 1.12
2.0 5.66 2.25 1.58 1.26 1.11
3.0 5.87 2.14 1.72 1.36 1.16
4.0 5.99 2.34 1.71 1.33 1.15
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The estimators 6,0, =nD"1,é3 =(n—k—1)D"l,é5 =é—n'lhl(€))
And é6 :é{l-n’l(k+3)}+(3n)_1{k+2—(k+1)/30} form a class of

estimators as they are all functions of the deviance statistic. We
let

Egv)(n): Var(é Var(é), Egv)(n) = mes(é)/mse(éjl (6.2)

A

denote the variance and mean square error efficiencies of 6;

relative to the ML estimator 0. Simulation estimates of the values
of these efficiences are shown in tables 10 ,11, 12 and 13 for

61,63,65 and é(, respectively. The broad findings are as follows

(i) The estimator él has only a slightly better variance per-

formance than 6. Even though its mean square error efficiency
approaches 0 as n— o the estimator had a better mean square error

performance than 0 for n<50 .

A

(11) Use of the estimator 0, gives a worthwhile improvement in

variance and mean square error performance compared with 0, in
small to moderate size samples. For n > 50 and small values of 0,

the mean square efficiency f 63 is less than one.

(ii1) The bias corrected estimator é3 has much better variance

and mean square error properties than 6 in small to moderate sized
samples. For n= 20, the mean square error efficiency was only a
little less than 2 and was still greater than 1.5 when n=50.

(iv) The performance of the estimator é6 was not unexpectedly

A

very similar to that of the estimator 0, .
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Table 10
Simulation estimates of variance and me efficiencies of 0, relative to 0

E{)(n) E{™ (n)
o\ n 10 20 30 50 100 10 20 30 50 100
0.5 1.07 1.03 1.17 1.18 1.19 1.36 142 1.27 0.73 0.37
1.0 1.02 1.04 1.05 1.06 1.06 1.14 124 1.25 1.04 0.68
1.5 1.01 1.02 1.02 1.03 1.03 1.09 1.17 1.19 1.13  0.90
2.0 1.00 1.01 1.01 1.01 1.01 1.07 1.13 1.17 1.13  1.00
3.0 1.00 1.00 1.00 1.01 1.01 1.05 1.10 1.12 1.12  1.08
4.0 1.00 1.00 1.00 1.00 1.00 1.03  1.07 1.09 1.10 1.09
Tablel 1l

A

Simulation estimates of variance and use eefficiences of 0, relative to 0

EM(n) E™(n)
o\ n 10 20 30 50 100 10 20 30 50 100
0.5 1.67 140 134 128 1.24 246 1.51 0.94 0.62 0.33
1.0 1.59 128 1.20 1.15 1.11 206 1.53 1.34 0.95 0.60
1.5 1.57 126 1.17 1.11 1.07 1.99 1.53 1.37 1.13  0.83
2.0 1.57 125 1.16 1.10 1.06 1.96 1.53 1.41 1.16  0.95
3.0 1.57 124 1.15 1.09 1.05 1.94 1.54 1.39 1.23  1.08
4.0 1.56 1.24 1.15 1.09 1.04 1.90 1.52 1.36 1.25  1.11
Table 12
Simulation estimates of variance and use eefficiences of 65 relative to 6
\ EL)(n) EL")(n)
O\ n 10 20 30 50 100 10 20 30 50 100
0.5 242 143 126 1.15 1.07 3.50 1.80 1.48 1.28 1.14
1.0 273 150 128 1.15 1.07 3.62  1.82 1.52 1.27 1.3
1.5 282 158 134 1.17 1.07 3.74  1.92 1.58 1.31 1.14
2.0 281 1.59 136 121 1.10 3.70  1.97 1.65 1.34  1.18
3.0 278 1.56 133 1.18 1.08 3.76  1.98 1.61 133 1.17
4.0 278 156 133 1.18 1.08 3.64  1.99 1.59 135 1.17
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Table 13

Simulation estimates of variance and use eefficiences of 04 relative to 0

E(6V)(n) E(é“)(n)
ON n 10 20 30 50 100 10 20 30 50 100
0.5 255 146 126 1.14 1.07 3.74  1.84 1.48 1.27 1.14
1.0 272 1.54 132 1.17 1.08 3.61 1.87 1.57 1.30 1.14
1.5 275 1.55 132 1.18 1.08 3.67 1.89 1.57 .32 1.15
2.0 2776 1.56 1.33 1.18 1.08 3.63 192 1.61 1.33 1.16
3.0 277 156 133 1.18 1.08 3.75 198 1.61 1.33  1.17
4.0 277 1.56 1.33 1.18 1.08 3.64 199 1.59 1.35 1.17

We now turn to the properties of the estimators based on the
Pearson statistic, namely 6, =(n —k—l)T_l,é7 =(n —1{—3)T_1 —(k+3)n_1

and the bias corrected form of é4 given by
0, =0,(1-2n")-(k+3)n"". (6.3)

Values of the simulation estimates of the variance efficiencies

Egv) and the mean square error efficiencies Egm)(n) of éj relative

to the ML estimator 6 are shown in tables 14 ,15 and 16 for 64,67

and ég , respectively. The broad findings from the results are as
follows

(i) The McCullagh-Nelder estimator é4 has a better performance
than the ML estimator 6 in very small samples. However, its use

cannot be recommended when n > 20 unless there are good grounds for
suspecting the ML estimate.

(i) The performance of the bias corrected estimator é7 compared
with 6 is good for sample sizes less than 50, except when 0 is very
small.

(iii) The performance of 4, , the bias corrected form of the
McCullagh-Nelder estimator is very similar to that of 67 except in
very small samples.
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Table 14
Simulation estimates of variance and mse efficiencies of 0, relative to 6

EY(n) E™(n)

o6\ n 10 20 30 50 100 10 20 30 50 100
0.5 0.77 045 036 032 0.30 0.72 0.39 0.30 0.28 042
1.0 1.05 0.74 0.58 0.53 0.50 1.15 0.71 0.57 0.51 048
1.5 1.36 0.87 0.73 0.65 0.56 146 090 0.75 0.67 0.56
2.0 1.36 0.87 0.73 0.65 0.56 1.47 1.01 0.88 072 1.64
3.0 145 1.01 090 0.79 0.74 1.62 1.13 0.97 0.83 0.76
4.0 148 1.09 099 0.82 0.80 1.69 1.22 1.07 0.88 0.84

Table 15

Simulation estimates of variance and mse efficiencies of 0, relative to @

BV (n) E™(n)
6N n 10 20 30 50 100 10 20 30 50 100
0.5 1.36 0.57 0.42 0.34 0.31 1.22 0.64 0.46 0.38 0.33
1.0 2.04 093 0.67 0.57 0.52 2.35 1.08 0.79 0.63 0.54
1.5 240 1.10 0.84 0.71 0.59 3.01 1.30 0.99 0.79 0.62
2.0 238 1.18 0.96 0.77 0.66 293 1.44 1.16 0.85 0.70
3.0 2.58 1.28 1.04 0.86 0.77 342 1.6l 1.26 0.97 0.83
4.0 2.64 138 1.15 090 0.83 340 1.76 1.36 1.03 0.90
Table 16

Simulation estimates of variance and mse efficiencies of 0, relative to @

—
<
~—~

\ Ey’(n) E{Y(n)

0 \n 10 20 30 50 100 10 20 30 50 100
0.5 1.20 0.56 041 0.34 0.31 1.26  0.64 0.46 0.38 0.33
1.0 1.79 091 0.67 0.57 0.52 223 1.07 0.79 0.63 0.54
1.5 2.10 1.07 0.83 0.57 0.52 223 107 0.79 0.63 0.54
2.0 209 1.16 095 0.76 0.65 270 141 1.51 0.85 0.70
3.0 226 125 1.03 086 0.77 3.06 1.58 1.25 097 0.83
4.0 232 135 1.13 059 0.83 3.05 1.72 1.35 1.02  0.90
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