7 research outputs found

    An Adeno-Associated Virus-Based Intracellular Sensor of Pathological Nuclear Factor-ÎșB Activation for Disease-Inducible Gene Transfer

    Get PDF
    Stimulation of resident cells by NF-ÎșB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-ÎșB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-ÎșB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-ÎșB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-ÎșB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-ÎșB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer. © 2013 Chtarto et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Biomarkers of Epileptogenesis: Psychiatric Comorbidities (?)

    No full text
    The last decade has witnessed a significant shift on our understanding of the relationship between psychiatric disorders and epilepsy. While traditionally psychiatric disorders were considered as a complication of the underlying seizure disorder, new epidemiologic data, supported by clinical and experimental research, have suggested the existence of a bidirectional relation between the two types of conditions: not only are patients with epilepsy at greater risk of experiencing a psychiatric disorder, but patients with primary psychiatric disorders are at greater risk of developing epilepsy. Do these data suggest that some of the pathogenic mechanisms operant in psychiatric comorbidities play a role in epileptogenesis? The aim of this article is to review the epidemiologic data that demonstrate that primary psychiatric disorders are more frequent in people who develop epilepsy, before the onset of the seizure disorder than among controls. The next question looks at the available data of pathogenic mechanisms of primary mood disorders and their potential for facilitating the development and/or exacerbation in the severity of epileptic seizures. Finally, we review data derived from experimental studies in animal models of depression and epilepsy that support a potential role of pathogenic mechanisms of mood disorders in the development of epileptic seizures and epileptogenesis. The data presented in this article do not yet establish conclusive evidence of a pathogenic role of psychiatric comorbidities in epileptogenesis, but raise important research questions that need to be investigated in experimental, clinical, and population-based epidemiologic research studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13311-014-0271-4) contains supplementary material, which is available to authorized users

    Depression and Anxiety in the Epilepsies: from Bench to Bedside

    No full text
    corecore