1,147 research outputs found

    Screening of conditions controlling spectrophotometric sequential injection analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its potential benefits over univariate, chemometrics is rarely utilized for optimizing sequential injection analysis (SIA) methods. Specifically, in previous vis-spectrophotometric SIA methods, chemometrically optimized conditions were confined within flow rate and reagent concentrations while other conditions were ignored.</p> <p>Results</p> <p>The current manuscript reports, for the first time, a comprehensive screening of conditions controlling vis-spectrophotometric SIA. A new diclofenac assay method was adopted. The method was based on oxidizing diclofenac by permanganate (a major reagent) with sulfuric acid (a minor reagent). The reaction produced a spectrophotometrically detectable diclofenac form. The 2<sup>6 </sup>full-factorial design was utilized to study the effect of volumes of reagents and sample, in addition to flow rate and concentrations of reagents. The main effects and all interaction order effects on method performance, i.e. namely sensitivity, rapidity and reagent consumption, were determined. The method was validated and applied to pharmaceutical formulations (tablets, injection and gel).</p> <p>Conclusions</p> <p>Despite 64 experiments those conducted in the current study were cumbersome, the results obtained would reduce effort and time when developing similar SIA methods in the future. It is recommended to critically optimize effective and interacting conditions using other such optimization tools as fractional-factorial design, response surface and simplex, rather than full-factorial design that used at an initial optimization stage. In vis-spectrophotometric SIA methods those involve developing reactions with two reagents (major and minor), conditions affecting method performance are in the following order: sample volume > flow rate ≈ major reagent concentration >> major reagent volume ≈ minor reagent concentration >> minor reagent volume.</p

    Audit of the change in the on-call practices in neuroradiology and factors affecting it

    Get PDF
    BACKGROUND: On call practices had recently changed at the Newcastle General Hospital to accommodate increasing CT scan requests and reduce the workloads of the radiologists. In the new system, the person responsible for dealing with the out of hours requests for imaging changed from the neuroradiologist to the neuroradiographer. This audit was conducted to assess any change in the departmental workload as a result of this change. METHODS: The audit was carried out over a period of six months and data was collected from the on-call booklets which the neuroradiographers maintained and the log books maintained in the department of neuroradiology. Details of the imaging requested; the source of the request, the reason for the request and the results of the scans were recorded and analysed using Microsoft Excelâ„¢. RESULTS: The number of CT scans requested from the A&E went up by 73.4% after the change in practice and majority of these increases were due to increased requests for scans on head injuries which increased by 122%. Although this was not statistically significant due to lack of study power, it is clinically relevant. CONCLUSION: The increase in the number of CT scans for head injuries reflects a general change in practice in management of head injuries in the UK. Changing the gatekeeper from radiologist to radiographer was associated with an increase in CT rate, particularly for head injuries. Other factors such as clinician seniority and a greater awareness of the NICE guidelines may have also contributed

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    Get PDF
    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures

    Ovarian germ cell tumors with rhabdomyosarcomatous components and later development of growing teratoma syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Development of a sarcomatous component in a germ cell tumor is an uncommon phenomenon. Most cases reported have a grim prognosis. Growing teratoma syndrome is also an uncommon phenomenon and occurs in approximately 2% to 7% of non seminomatous germ cell tumors and should be treated surgically.</p> <p>Case presentation</p> <p>We report the case of a 12-year-old Asian girl with an ovarian mixed germ cell tumor containing a rhabdomyosarcomatous component. She was treated with a germ cell tumor chemotherapy regimen and rhabdomyosarcoma-specific chemotherapy. Towards the end of her treatment, she developed a retroperitoneal mass that was increasing in size. It was completely resected, revealing a mature teratoma, consistent with growing teratoma syndrome. She is still in complete remission approximately three years after presentation.</p> <p>Conclusion</p> <p>The presence of rhabdomyosarcoma in a germ cell tumor should be treated by a combined chemotherapy regimen (for germ cell tumor and rhabdomyosarcoma). In addition, development of a mass during or after therapy with normal serum markers should raise the possibility of growing teratoma syndrome that should be treated surgically.</p

    Consolidation of an Olfactory Memory Trace in the Olfactory Bulb Is Required for Learning-Induced Survival of Adult-Born Neurons and Long-Term Memory

    Get PDF
    Background: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Methodology/Principal Findings: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. Conclusion/Significance: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival durin

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde
    • …
    corecore