61 research outputs found

    Developed performance of rGO/p-Si Schottky junction solar cells

    Get PDF
    Graphene in combination with Si has been extensively used to prepare efficient and stable p-graphene/n-Si Schottky junction solar cells. In contrast, there is a difficulty in including graphene within the fabrication process of efficient and stable n-graphene/p-Si Schottky junction solar cells. The reason for this is that there is a challenge in achieving an effective and stable n-doping process for graphene or rGO due to the ambient environment. In this work, a novel approach is introduced for preparing more efficient, stable, larger and simpler n-rGO/p-Si Schottky junction solar cells. The n-rGO rather than graphene, which has been successfully developed using NH3 molecules, is included in the fabrication process of n-rGO/p-Si Schottky junction solar cells. Accordingly, the power conversion efficiency of 9.7 was obtained for prepared devices after applying ammonia treatment for 3 h. For the first time, the developed n-rGO layers are also excellently employed to prepare large n-rGO/p-Si Schottky junction solar cells with ideal J-V curves. The improved efficiency of 12.6 % is reached for n-rGO/p-Si Schottky junction solar cells prepared with an active area of 0.6 cm2. To improve the stability, devices are coated with PMMA as an encapsulated layer, leading to an improvement in the stability for 2 months in the ambient air. Additionally, a recorded efficiency of 13.8 % is achieved. We attribute this development to the chemisorption of ammonia molecules on rGO, which effectively develops the performance of devices

    An Improved Technique for Chromosomal Analysis of Human ES and iPS Cells

    Get PDF
    Prolonged in vitro culture of human embryonic stem (hES) cells can result in chromosomal abnormalities believed to confer a selective advantage. This potential occurrence has crucial implications for the appropriate use of hES cells for research and therapeutic purposes. In view of this, time-point karyotypic evaluation to assess genetic stability is recommended as a necessary control test to be carried out during extensive ‘passaging’. Standard techniques currently used for the cytogenetic assessment of ES cells include G-banding and/or Fluorescence in situ Hybridization (FISH)-based protocols for karyotype analysis, including M-FISH and SKY. Critical for both banding and FISH techniques are the number and quality of metaphase spreads available for analysis at the microscope. Protocols for chromosome preparation from hES and human induced pluripotent stem (hiPS) cells published so far appear to differ considerably from one laboratory to another. Here we present an optimized technique, in which both the number and the quality of chromosome metaphase spreads were substantially improved when compared to current standard techniques for chromosome preparations. We believe our protocol represents a significant advancement in this line of work, and has the required attributes of simplicity and consistency to be widely accepted as a reference method for high quality, fast chromosomal analysis of human ES and iPS cells

    Candida dubliniensis: An Appraisal of Its Clinical Significance as a Bloodstream Pathogen

    Get PDF
    A nine-year prospective study (2002–2010) on the prevalence of Candida dubliniensis among Candida bloodstream isolates is presented. The germ tube positive isolates were provisionally identified as C. dubliniensis by presence of fringed and rough colonies on sunflower seed agar. Subsequently, their identity was confirmed by Vitek2 Yeast identification system and/or by amplification and sequencing of the ITS region of rDNA. In all, 368 isolates were identified as C. dubliniensis; 67.1% came from respiratory specimens, 11.7% from oral swabs, 9.2% from urine, 3.8% from blood, 2.7% from vaginal swabs and 5.4% from other sources. All C. dubliniensis isolates tested by Etest were susceptible to voriconazole and amphotericin B. Resistance to fluconazole (≥8 µg/ml) was observed in 2.5% of C. dubliniensis isolates, 7 of which occurred between 2008–2010. Of note was the diagnosis of C. dubliniensis candidemia in 14 patients, 11 of them occurring between 2008–2010. None of the bloodstream isolate was resistant to fluconazole, while a solitary isolate showed increased MIC to 5-flucytosine (>32 µg/ml) and belonged to genotype 4. A review of literature since 1999 revealed 28 additional cases of C. dubliniensis candidemia, and 167 isolates identified from blood cultures since 1982. In conclusion, this study highlights a greater role of C. dubliniensis in bloodstream infections than hitherto recognized

    Concurrent Proinflammatory and Apoptotic Activity of a Helicobacter pylori Protein (HP986) Points to Its Role in Chronic Persistence

    Get PDF
    Helicobacter pylori induces cytokine mediated changes in gastroduodenal pathophysiology, wherein, the activated macrophages at the sub-mucosal space play a central role in mounting innate immune response against the antigens. The bacterium gains niche through persistent inflammation and local immune-suppression causing peptic ulcer disease or chronic gastritis; the latter being a significant risk factor for the development of gastric adenocarcinoma. What favors persistence of H. pylori in the gastric niches is not clearly understood. We report detailed characterization of a functionally unknown gene (HP986), which was detected in patient isolates associated with peptic ulcer and gastric carcinoma. Expression and purification of recombinant HP986 (rHP986) revealed a novel, ∼29 kDa protein in biologically active form which associates with significant levels of humoral immune responses in diseased individuals (p<0.001). Also, it induced significant levels of TNF-α and Interleukin-8 in cultured human macrophages concurrent to the translocation of nuclear transcription factor-κB (NF-κB). Further, the rHP986 induced apoptosis of cultured macrophages through a Fas mediated pathway. Dissection of the underlying signaling mechanism revealed that rHP986 induces both TNFR1 and Fas expression to lead to apoptosis. We further demonstrated interaction of HP986 with TNFR1 through computational and experimental approaches. Independent proinflammatory and apoptotic responses triggered by rHP986 as shown in this study point to its role, possibly as a survival strategy to gain niche through inflammation and to counter the activated macrophages to avoid clearance

    May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension (vol 40, pg 2006, 2019)

    Get PDF

    Anti-capsular activity of CuO nanoparticles against Acinetobacter baumannii produce efflux pump

    Get PDF
    Copper oxide nanoparticles are modern kinds of antimicrobials, which may get a lot of interest in the clinical application. This study aimed to detect the anti-capsular activity of CuO nanoparticles against Acinetobacter baumannii produce efflux pump. Thirty-four different clinical A. baumannii isolates were collected and identified by the phenotypic and genetic methods by the recA gene as housekeeping. Antibiotic sensitivity and biofilm-forming ability, capsular formation were carried out. The effect of CuO nanoparticles on capsular isolates was detected, the synergistic effects of a combination CuO nanoparticles and gentamicin against A. baumannii were determined by micro broth checkerboard method, and the effect of CuO nanoparticles on the expression of ptk, espA and mexX genes was analyzed. Results demonstrated that CuO nanoparticles with gentamicin revealed a synergistic effect. Gene expression results show reducing the expression of these capsular genes by CuO nanoparticles is major conduct over reducing A. baumannii capsular action. Furthermore, results proved that there was a relationship between the capsule-forming ability and the absence of biofilm-forming ability. As bacterial isolates which were negative biofilm formation were positive in capsule formation and vice versa. In conclusion, CuO nanoparticles have the potential to be used as an anti-capsular agent against A. baumannii, and their combination with gentamicin can enhance their antimicrobial effect. The study also suggests that the absence of biofilm formation may be associated with the presence of capsule formation in A. baumannii. These findings provide a basis for further research on the use of CuO nanoparticles as a novel antimicrobial agent against A. baumannii and other bacterial pathogens, also to investigate the potential of CuO nanoparticles to inhibit the production of efflux pumps in A. baumannii, which are a major mechanism of antibiotic resistance
    • …
    corecore