24 research outputs found

    Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications

    Get PDF
    BackgroundDouble-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2alpha leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far.ResultsHere we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2alpha in yeast.ConclusionConsidering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed

    Hybrid meta-heuristic algorithms for a supply chain network considering different carbon emission regulations using big data characteristics

    No full text
    Big data (BD) approach has significantly impacted on the development and expansion of supply chain network management and design. The available problems in the supply chain network (SCN) include production, distribution, transportation, ordering, and inventory holding problems. These problems under the BD environment are challenging and considerably affect the efficiency of the SCN. The drastic environmental and regulatory changes around the world and the rising concerns about carbon emissions have increased the awareness of customers regarding the carbon footprint of the products they are consuming. This has enforced supply chain managers to change strategies to reframe carbon emissions. The decisions such as an optimization of the suitable network of the proper lot sizes can play a crucial role in minimizing the whole carbon emissions in the SCN. In this paper, a new integrated production–transportation–ordering–inventory holding problem for SCN is developed. In this regard, a mixed-integer nonlinear programming (MINLP) model in the multi-product, multi-level, and multi-period SCN is formulated based on the minimization of the total costs and the related cost of carbon emissions. The research also uses a chance-constrained programming approach. The proposed model needs a range of real-time parameters from capacities, carbon caps, and costs. These parameters along with the various sizes of BD, namely velocity, variety, and volume, have been illustrated. A lot-sizing policy along with carbon emissions is also provided in the proposed model. One of the important contributions of this paper is the three various carbon regulation policies that include carbon capacity-and-trade, the strict capacity on emission, and the carbon tax on emissions in order to assess the carbon emissions. As there is no benchmark available in the literature, this study contributes toward this aspect by proposing two hybrid novel meta-heuristics (H-1) and (H-2) to optimize the large-scale problems with the complex structure containing BD. Hence, a generated random dataset possessing the necessary parameters of BD, namely velocity, variety, and volume, is provided to validate and solve the suggested model. The parameters of the proposed algorithms are calibrated and controlled using the Taguchi approach. In order to evaluate hybrid algorithms and find optimal solutions, the study uses 15 randomly generated data examples having necessary features of BD and T test significance. Finally, the effectiveness and performance of the presented model are analyzed by a set of sensitivity analyses. The outcome of our study shows that H-2 is of higher efficiency
    corecore