69 research outputs found
Enteric-coated sodium bicarbonate supplementation improves high-intensity cycling performance in trained cyclists
Purpose: Enteric-coated sodium bicarbonate (NaHCO3) can attenuate gastrointestinal (GI) symptoms following acute bicarbonate loading, although the subsequent effects on exercise performance have not been investigated. The purpose of this study was to examine the effects of enteric-coated NaHCO3 supplementation on high-intensity exercise performance and GI symptoms. Methods: Eleven trained male cyclists completed three 4 km time trials after consuming; a placebo or 0.3 g∙kg–1 body mass NaHCO3 in enteric-coated or gelatin capsules. Exercise trials were timed with individual peak blood bicarbonate ion concentration ([HCO3–]). Blood acid–base balance was measured pre-ingestion, pre-exercise, and post-exercise, whereas GI symptoms were recorded pre-ingestion and immediately pre-exercise. Results: Pre-exercise blood [HCO3−] and potential hydrogen (pH) were greater for both NaHCO3 conditions (P < 0.0005) when compared to placebo. Performance time was faster with enteric-coated (− 8.5 ± 9.6 s, P = 0.044) and gelatin (− 9.6 ± 7.2 s, P = 0.004) NaHCO3 compared to placebo, with no significant difference between conditions (mean difference = 1.1 ± 5.3 s, P = 1.000). Physiological responses were similar between conditions, although blood lactate ion concentration was higher with gelatin NaHCO3 (2.4 ± 1.7 mmol∙L–1, P = 0.003) compared with placebo. Furthermore, fewer participants experienced GI symptoms with enteric-coated (n = 3) compared to gelatin (n = 7) NaHCO3. Discussion: Acute enteric-coated NaHCO3 consumption mitigates GI symptoms at the onset of exercise and improves subsequent 4 km cycling TT performance. Athletes who experience GI side-effects after acute bicarbonate loading may, therefore, benefit from enteric-coated NaHCO3 supplementation prior to exercise performance.</p
Neuroplasticity and aphasia treatments: new approaches for an old problem
Given the profound impact of language impairment after stroke (aphasia), neuroplasticity research is garnering considerable attention as means for eventually improving aphasia treatments and how they are delivered. Functional and structural neuroimaging studies indicate that aphasia treatments can recruit both residual and new neural mechanisms to improve language function and that neuroimaging modalities may hold promise in predicting treatment outcome. In relatively small clinical trials, both non-invasive brain stimulation and behavioural manipulations targeting activation or suppression of specific cortices can improve aphasia treatment outcomes. Recent language interventions that employ principles consistent with inducing neuroplasticity also are showing improved performance for both trained and novel items and contexts. While knowledge is rapidly accumulating, larger trials emphasising how to select optimal paradigms for individualised aphasia treatment are needed. Finally, a model of how to incorporate the growing knowledge into clinical practice could help to focus future research
Reviewing the limb apraxia concept: From definition to cognitive neuropsychological models
Large-Scale Cortical Functional Organization and Speech Perception across the Lifespan
Aging is accompanied by substantial changes in brain function, including functional reorganization of large-scale brain networks. Such differences in network architecture have been reported both at rest and during cognitive task performance, but an open question is whether these age-related differences show task-dependent effects or represent only task-independent changes attributable to a common factor (i.e., underlying physiological decline). To address this question, we used graph theoretic analysis to construct weighted cortical functional networks from hemodynamic (functional MRI) responses in 12 younger and 12 older adults during a speech perception task performed in both quiet and noisy listening conditions. Functional networks were constructed for each subject and listening condition based on inter-regional correlations of the fMRI signal among 66 cortical regions, and network measures of global and local efficiency were computed. Across listening conditions, older adult networks showed significantly decreased global (but not local) efficiency relative to younger adults after normalizing measures to surrogate random networks. Although listening condition produced no main effects on whole-cortex network organization, a significant age group x listening condition interaction was observed. Additionally, an exploratory analysis of regional effects uncovered age-related declines in both global and local efficiency concentrated exclusively in auditory areas (bilateral superior and middle temporal cortex), further suggestive of specificity to the speech perception tasks. Global efficiency also correlated positively with mean cortical thickness across all subjects, establishing gross cortical atrophy as a task-independent contributor to age-related differences in functional organization. Together, our findings provide evidence of age-related disruptions in cortical functional network organization during speech perception tasks, and suggest that although task-independent effects such as cortical atrophy clearly underlie age-related changes in cortical functional organization, age-related differences also demonstrate sensitivity to task domains
Oral health conditions and frailty in Mexican community-dwelling elderly: a cross sectional analysis
Recommended from our members
Aficamten and Cardiopulmonary Exercise Test Performance
Importance
Impaired exercise capacity is a cardinal manifestation of obstructive hypertrophic cardiomyopathy (HCM). The Phase 3 Trial to Evaluate the Efficacy and Safety of Aficamten Compared to Placebo in Adults With Symptomatic Obstructive HCM (SEQUOIA-HCM) is a pivotal study characterizing the treatment effect of aficamten, a next-in-class cardiac myosin inhibitor, on a comprehensive set of exercise performance and clinical measures.
Objective
To evaluate the effect of aficamten on exercise performance using cardiopulmonary exercise testing with a novel integrated measure of maximal and submaximal exercise performance and evaluate other exercise measures and clinical correlates.
Design, Setting, and Participants
This was a prespecified analysis from SEQUOIA-HCM, a double-blind, placebo-controlled, randomized clinical trial. Patients were recruited from 101 sites in 14 countries (North America, Europe, Israel, and China). Individuals with symptomatic obstructive HCM with objective exertional intolerance (peak oxygen uptake [pVO2] ≤90% predicted) were included in the analysis. Data were analyzed from January to March 2024.
Interventions
Randomized 1:1 to aficamten (5-20 mg daily) or matching placebo for 24 weeks.
Main Outcomes and Measures
The primary outcome was change from baseline to week 24 in integrated exercise performance, defined as the 2-component z score of pVO2 and ventilatory efficiency throughout exercise (minute ventilation [VE]/carbon dioxide output [VCO2] slope). Response rates for achieving clinically meaningful thresholds for change in pVO2 and correlations with clinical measures of treatment effect (health status, echocardiographic/cardiac biomarkers) were also assessed.
Results
Among 282 randomized patients (mean [SD] age, 59.1 [12.9] years; 115 female [40.8%], 167 male [59.2%]), 263 (93.3%) had core laboratory–validated exercise testing at baseline and week 24. Integrated composite exercise performance improved in the aficamten group (mean [SD] z score, 0.17 [0.51]) from baseline to week 24, whereas the placebo group deteriorated (mean [SD] z score, −0.19 [0.45]), yielding a placebo-corrected improvement of 0.35 (95% CI, 0.25-0.46; P &amp;lt;.001). Further, aficamten treatment demonstrated significant improvements in total workload, circulatory power, exercise duration, heart rate reserve, peak heart rate, ventilatory efficiency, ventilatory power, and anaerobic threshold (all P &amp;lt;.001). In the aficamten group, large improvements (≥3.0 mL/kg per minute) in pVO2 were more common than large reductions (32% and 2%, respectively) compared with placebo (16% and 11%, respectively). Improvements in both components of the primary outcome, pVO2 and VE/VCO2 slope throughout exercise, were significantly correlated with improvements in symptom burden and hemodynamics (all P &amp;lt;.05).
Conclusions and Relevance
This prespecified analysis of the SEQUOIA-HCM randomized clinical trial found that aficamten treatment improved a broad range of exercise performance measures. These findings offer valuable insight into the therapeutic effects of aficamten.
Trial Registration
ClinicalTrials.gov Identifier: NCT0518681
Non-random distribution of spermatogonia in rats: evidence of niches in the seminiferous tubules
- …
