28 research outputs found

    Impact of internet of things (IoT) in disaster management: a task-technology fit perspective

    Get PDF
    YesDisaster management aims to mitigate the potential damage from the disasters, ensure immediate and suitable assistance to the victims, and attain effective and rapid recovery. These objectives require a planned and effective rescue operation post such disasters. Different types of information about the impact of the disaster are, hence, required for planning an effective and immediate relief operation. The IoT technology available today is quite mature and has the potential to be very useful in disaster situations. This paper analyzes the requirements for planning rescue operation for such natural disasters and proposes an IoT based solution to cater the identified requirements. The proposed solution is further validated using the task-technology fit (TTF) approach for analyzing the significance of the adoption of IoT technology for disaster management. Results from the exploratory study established the core dimensions of the task requirements and the TTF constructs. Results from the confirmatory factor analysis using PLS path modelling, further, suggest that both task requirements and IoT technology have significant impact on the IoT TTF in the disaster management scenario. This paper makes significant contributions in the development of appropriate constructs for modeling TTF for IoT Technology in the context of disaster management

    Union of Intersections (UoI) for interpretable data driven discovery and prediction

    No full text
    The increasing size and complexity of scientific data could dramatically enhance discovery and prediction for basic scientific applications. Realizing this potential, however, requires novel statistical analysis methods that are both interpretable and predictive. We introduce Union of Intersections (UoI), a flexible, modular, and scalable framework for enhanced model selection and estimation. Methods based on UoI perform model selection and model estimation through intersection and union operations, respectively. We show that UoI-based methods achieve low-variance and nearly unbiased estimation of a small number of interpretable features, while maintaining high-quality prediction accuracy. We perform extensive numerical investigation to evaluate a UoI algorithm (UoILasso) on synthetic and real data. In doing so, we demonstrate the extraction of interpretable functional networks from human electrophysiology recordings as well as accurate prediction of phenotypes from genotype-phenotype data with reduced features. We also show (with the UoIL1Logistic and UoICUR variants of the basic framework) improved prediction parsimony for classification and matrix factorization on several benchmark biomedical data sets. These results suggest that methods based on the UoI framework could improve interpretation and prediction in data-driven discovery across scientific fields

    Breaking the Curse of Visual Analytics : Accommodating Virtual Reality in the Visualization Pipeline

    No full text
    Previous research has exposed the discrepancy between the subject of analysis (real world) and the actual data on which the analysis is performed (data world) as a critical weak spot in visual analysis pipelines. In this paper, we demonstrate how Virtual Reality (VR) can help to verify the correspondence of both worlds in the context of Information Visualization (InfoVis) and Visual Analytics (VA). Immersion allows the analyst to dive into the data world and collate it to familiar real-world scenarios. If the data world lacks crucial dimensions, then these are also missing in created virtual environments, which may draw the analyst’s attention to inconsistencies between the database and the subject of analysis. When situating VR in a generic visualization pipeline, we can confirm its basic equality compared to other mediums as well as possible benefits. To overcome the guarded stance of VR in InfoVis and VA, we present a structured analysis of arguments, exhibiting the circumstances that make VR a viable medium for visualizations. As a further contribution, we discuss how VR can aid in minimizing the gap between the data world and the real world and present a use case that demonstrates two solution approaches. Finally, we report on initial expert feedback attesting the applicability of our approach in a real-world scenario for crime scene investigation.publishe
    corecore