60 research outputs found

    The Role of Diet, Micronutrients and the Gut Microbiota in Age-Related Macular Degeneration: New Perspectives from the Gut\u207bRetina Axis.

    Get PDF
    Age-related macular degeneration (AMD) is a complex multifactorial disease and the primary cause of legal and irreversible blindness among individuals aged 6565 years in developed countries. Globally, it affects 30\u207b50 million individuals, with an estimated increase of approximately 200 million by 2020 and approximately 300 million by 2040. Currently, the neovascular form may be able to be treated with the use of anti-VEGF drugs, while no effective treatments are available for the dry form. Many studies, such as the randomized controlled trials (RCTs) Age-Related Eye Disease Study (AREDS) and AREDS 2, have shown a potential role of micronutrient supplementation in lowering the risk of progression of the early stages of AMD. Recently, low-grade inflammation, sustained by dysbiosis and a leaky gut, has been shown to contribute to the development of AMD. Given the ascertained influence of the gut microbiota in systemic low-grade inflammation and its potential modulation by macro- and micro-nutrients, a potential role of diet in AMD has been proposed. This review discusses the role of the gut microbiota in the development of AMD. Using PubMed, Web of Science and Scopus, we searched for recent scientific evidence discussing the impact of dietary habits (high-fat and high-glucose or -fructose diets), micronutrients (vitamins C, E, and D, zinc, beta-carotene, lutein and zeaxanthin) and omega-3 fatty acids on the modulation of the gut microbiota and their relationship with AMD risk and progression

    Hsp60 Is Actively Secreted by Human Tumor Cells

    Get PDF
    Background: Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination. Methodology/Principal Findings: Since cancer cells may undergo necrosis and apoptosis, it could be possible that extracellular Hsps are chiefly the result of cell destruction but not the product of an active, physiological process. In this work, we studied three tumor cells lines and found that they all release Hsp60 into the culture media by an active mechanism independently of cell death. Biochemical analyses of one of the cell lines revealed that Hsp60 secretion was significantly reduced, by inhibitors of exosomes and lipid rafts. Conclusions/Significance: Our data suggest that Hsp60 release is the result of an active secretion mechanism and, since extracellular release of the chaperone was demonstrated in all tumor cell lines investigated, our observations most likel

    Convergent Sets of Data from In Vivo and In Vitro Methods Point to an Active Role of Hsp60 in Chronic Obstructive Pulmonary Disease Pathogenesis

    Get PDF
    BACKGROUND: It is increasingly clear that some heat shock proteins (Hsps) play a role in inflammation. Here, we report results showing participation of Hsp60 in the pathogenesis of chronic obstructive pulmonary diseases (COPD), as indicated by data from both in vivo and in vitro analyses. METHODS AND RESULTS: Bronchial biopsies from patients with stable COPD, smoker controls with normal lung function, and non-smoker controls were studied. We quantified by immunohistochemistry levels of Hsp10, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90, and HSF-1, along with levels of inflammatory markers. Hsp10, Hsp40, and Hsp60 were increased during progression of disease. We found also a positive correlation between the number of neutrophils and Hsp60 levels. Double-immunostaining showed that Hsp60-positive neutrophils were significantly increased in COPD patients. We then investigated in vitro the effect on Hsp60 expression in bronchial epithelial cells (16HBE) caused by oxidative stress, a hallmark of COPD mucosa, which we induced with H\u2082O\u2082. This stressor determined increased levels of Hsp60 through a gene up-regulation mechanism involving NFkB-p65. Release of Hsp60 in the extracellular medium by the bronchial epithelial cells was also increased after H\u2082O\u2082 treatment in the absence of cell death. CONCLUSIONS: This is the first report clearly pointing to participation of Hsps, particularly Hsp60, in COPD pathogenesis. Hsp60 induction by NFkB-p65 and its release by epithelial cells after oxidative stress can have a role in maintaining inflammation, e.g., by stimulating neutrophils activity. The data open new scenarios that might help in designing efficacious anti-inflammatory therapies centered on Hsp60 and applicable to COP

    Expression of the Stress Response Oncoprotein LEDGF/p75 in Human Cancer: A Study of 21 Tumor Types

    Get PDF
    Oxidative stress-modulated signaling pathways have been implicated in carcinogenesis and therapy resistance. The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to stress-induced cell death. This protein has been implicated in inflammatory and autoimmune conditions, HIV-AIDS, and cancer. Although LEDGF/p75 is emerging as a stress survival oncoprotein, there is scarce information on its expression in human tumors. The present study was performed to evaluate its expression in a comprehensive panel of human cancers. Transcript expression was examined in the Oncomine cancer gene microarray database and in a TissueScan Cancer Survey Panel quantitative polymerase chain reaction (Q-PCR) array. Protein expression was assessed by immunohistochemistry (IHC) in cancer tissue microarrays (TMAs) containing 1735 tissues representing single or replicate cores from 1220 individual cases (985 tumor and 235 normal tissues). A total of 21 major cancer types were analyzed. Analysis of LEDGF/p75 transcript expression in Oncomine datasets revealed significant upregulation (tumor vs. normal) in 15 out of 17 tumor types. The TissueScan Cancer Q-PCR array revealed significantly elevated LEDGF/p75 transcript expression in prostate, colon, thyroid, and breast cancers. IHC analysis of TMAs revealed significant increased levels of LEDGF/p75 protein in prostate, colon, thyroid, liver and uterine tumors, relative to corresponding normal tissues. Elevated transcript or protein expression of LEDGF/p75 was observed in several tumor types. These results further establish LEDGF/p75 as a cancer-related protein, and provide a rationale for ongoing studies aimed at understanding the clinical significance of its expression in specific human cancers

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    IκB kinase-driven nuclear factor-κB activation in patients with asthma and chronic obstructive pulmonary disease.

    No full text
    BACKGROUND: Nuclear factor-κB (NF-κB) is a transcriptional factor of different inflammatory patterns involved in asthma and chronic obstructive pulmonary disease (COPD) that is tightly controlled by IκB kinase (IKK) complex. OBJECTIVE: We investigated the dysregulation of IKK-driven NF-κB activation in patients with asthma and COPD. METHODS: We assessed IKKα and IKKβ expression and activation, their regulation by glucocorticosteroids, and their involvement in IL-8 synthesis in PBMCs isolated from asthmatic patients, healthy smokers (HSs), patients with COPD, and control subjects. PBMCs from control subjects were stimulated with TNF-α and cigarette smoke extract in the presence or absence of fluticasone propionate (FP), L-glutathione reduced, or both, and IKK activation and IL-8 release were evaluated. RESULTS: IKKα activity was higher in patients with COPD and HSs than in asthmatic patients and control subjects. IKKβ activity was higher in asthmatic patients, HSs, and patients with COPD than in control subjects. In vitro FP treatment induced inhibition of both IKKα and IKKβ activity in PBMCs from asthmatic patients, patients with COPD, and HSs, although IKKβ activity was more sensitive to FP than that of IKKα. FP reduced the IL-8 released from PBMCs of asthmatic patients, patients with COPD, and HSs, although IL-8 inhibition was higher in asthmatic patients than in patients with COPD and HSs. FP reduced IKKα and IKKβ activities in TNF-α and cigarette smoke extract-treated PBMCs, with higher levels of inhibition for IKKβ than IKKα activity. L-glutathione reduced improved the downregulatory effects of FP on IKKα and IL-8 levels. CONCLUSION: Based on differential activation of IKKα and IKKβ, our findings suggest a different profile in the upstream regulation of the IKK-driven NF-κB system in asthmatic patients and patients with COPD. These differences in the regulation of the inflammatory process may explain, at least in part, the different pharmacologic responses in these patients
    • …
    corecore