37 research outputs found
Enhancing Wireless Video Transmissions in Virtual Collaboration Environments
This paper introduces the virtual collaboration
environment and discusses the problems encountered in wireless
video transmissions of the participating users. Different schemes
are proposed and evaluated to address various problems
encountered in the wireless access links of the virtual
collaboration system for enhancing the perceived visual quality.
The schemes include radio network resource optimization,
optimal joint source and channel rate allocation and error
resilience enhancement using SVC-MDC. These schemes have
been shown to offer a strong potential to be incorporated in a
virtual collaboration system for quality enhancement
Molecular Genetic Features of Polyploidization and Aneuploidization Reveal Unique Patterns for Genome Duplication in Diploid Malus
Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F1 seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of aneuploidization on speciation and evolution, and potential applications of aneuploids and polyploids in breeding and genetics for other species were evaluated in depth. This study greatly improves our understanding of evolution, speciation, and adaptation of the Malus genus, and provides strategies to exploit polyploidization in other species
The Ecology of Antibiotic Use in the ICU: Homogeneous Prescribing of Cefepime but Not Tazocin Selects for Antibiotic Resistant Infection
Background: Antibiotic homogeneity is thought to drive resistance but in vivo data are lacking. In this study, we determined the impact of antibiotic homogeneity per se, and of cefepime versus antipseudomonal penicillin/beta-lactamase inhibitor combinations (APP-beta), on the likelihood of infection or colonisation with antibiotic resistant bacteria and/or two commonly resistant nosocomial pathogens (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa). A secondary question was whether antibiotic cycling was associated with adverse outcomes including mortality, length of stay, and antibiotic resistance
Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus.
PMC3753269Spherical and globular bushy cells of the AVCN receive huge auditory nerve endings specialized for high fidelity neural transmission in response to acoustic events. Recent studies in mice and other rodent species suggest that the distinction between bushy cell subtypes is not always straightforward. We conducted a systematic investigation of mouse bushy cells along the rostral-caudal axis in an effort to understand the morphological variation that gives rise to reported response properties in mice. We combined quantitative light and electron microscopy to investigate variations in cell morphology, immunostaining, and the distribution of primary and non-primary synaptic inputs along the rostral-caudal axis. Overall, large regional differences in bushy cell characteristics were not found; however, rostral bushy cells received a different complement of axosomatic input compared to caudal bushy cells. The percentage of primary auditory nerve terminals was larger in caudal AVCN, whereas non-primary excitatory and inhibitory inputs were more common in rostral AVCN. Other ultrastructural characteristics of primary auditory nerve inputs were similar across the rostral and caudal AVCN. Cross sectional area, postsynaptic density length and curvature, and mitochondrial volume fraction were similar for axosomatic auditory nerve terminals, although rostral auditory nerve terminals contained a greater concentration of synaptic vesicles near the postsynaptic densities. These data demonstrate regional differences in synaptic organization of inputs to mouse bushy cells rather than the morphological characteristic of the cells themselves.JH Libraries Open Access Fun