38 research outputs found

    Pivotal Role of Inosine Triphosphate Pyrophosphatase in Maintaining Genome Stability and the Prevention of Apoptosis in Human Cells

    Get PDF
    Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically important because a widespread polymorphism, 94C>A, leads to null ITPase activity in erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study, we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated risk for degenerative diseases and cancer

    Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p

    Differential expressions of bilaterally unerupted supernumerary teeth

    No full text
    This article presents a case of bilateral unerupted supernumerary teeth in the mandibular premolar region. Surgical removal of the right-sided supernumerary tooth had to be carried out as it was impeding the eruption of the mandibular first premolar. However, its supernumerary antimere, lay dormant

    Identification of two new Pmp22 mouse mutants using large-scale mutagenesis and a novel rapid mapping strategy.

    No full text
    Mouse mutants have a key role in discerning mammalian gene function and modelling human disease; however, at present mutants exist for only 1-2% of all mouse genes. In order to address this phenotype gap, we have embarked on a genome-wide, phenotype-driven, large-scale N-ethyl-N--nitrosourea (ENU) mutagenesis screen for dominant mutations of clinical and pharmacological interest in the mouse. Here we describe the identification of two similar neurological phenotypes and determination of the underlying mutations using a novel rapid mapping strategy incorporating speed back-crosses and high throughput genotyping. Two mutant mice were identified with marked resting tremor and further characterized using the SHIRPA behavioural and functional assessment protocol. Back-cross animals were generated using in vitro fertilization and genome scans performed utilizing DNA pools derived from multiple mutant mice. Both mutants were mapped to a region on chromosome 11 containing the peripheral myelin protein 22 gene (Pmp22). Sequence analysis revealed novel point mutations in Pmp22 in both lines. The first mutation, H12R, alters the same amino acid as in the severe human peripheral neuropathy Dejerine Sottas syndrome and Y153TER in the other mutant truncates the Pmp22 protein by seven amino acids. Histological analysis of both lines revealed hypo-myelination of peripheral nerves. This is the first report of the generation of a clinically relevant neurological mutant and its rapid genetic characterization from a large-scale mutagenesis screen for dominant phenotypes in the mouse, and validates the use of large-scale screens to generate desired clinical phenotypes in mice
    corecore