341 research outputs found

    The evolution of early cellular systems viewed through the lens of biological interactions.

    Get PDF
    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are &quot;free-living.&quot; As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution.</p

    Future costs in cost-effectiveness analysis: an empirical assessment

    Get PDF
    To assess the usage of cost-utility analysis (CUA) in oral health interventions and to evaluate the methods used and the reporting quality of CUA in publications on oral health interventions

    Temporal reliability of cytokines and growth factors in EDTA plasma

    Get PDF
    Background. Cytokines are involved in the development of chronic diseases, including cancer. It is important to evaluate the temporal reproducibility of cytokines in plasma prior to conducting epidemiologic studies utilizing these markers. Findings. We assessed the temporal reliability of CRP, 22 cytokines and their soluble receptors (IL-1α, ILβ-1, IL-1RA, IL-2, sIL-2R, IL-4, IL-5, IL-6, sIL-6R, IL-7, IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17, TNFα, sTNF-R1, sTNF-R2, IFNα, IFNγ) and eight growth factors (GM-CSF, EGF, bFGF, G-CSF, HGF, VEGF, EGFR, ErbB2) in repeated EDTA plasma samples collected an average of two years apart from 18 healthy women (age range: 42-62) enrolled in a prospective cohort study. We also estimated the correlation between serum and plasma biomarker levels using 18 paired clinical samples from postmenopausal women (age range: 75-86). Twenty-six assays were able to detect their analytes in at least 70% of samples. Of those 26 assays, we observed moderate to high intra-class correlation coefficients (ICCs)(ranging from 0.53-0.89) for 22 assays, and low ICCs (0-0.47) for four assays. Serum and plasma levels were highly correlated (r > 0.6) for most markers, except for seven assays (r < 0.5). Conclusions. For 22 of the 31 biomarkers, a single plasma measurement is a reliable estimate of a woman's average level over a two-year period. © 2010 Clendenen et al; licensee BioMed Central Ltd

    Interactive and automated application of virtual microscopy

    Get PDF
    Virtual microscopy can be applied in an interactive and an automated manner. Interactive application is performed in close association to conventional microscopy. It includes image standardization suitable to the performance of an individual pathologist such as image colorization, white color balance, or individual adjusted brightness. The steering commands have to include selection of wanted magnification, easy navigation, notification, and simple measurements (distances, areas). The display of the histological image should be adjusted to the physical limits of the human eye, which are determined by a view angle of approximately 35 seconds. A more sophisticated performance should include acoustic commands that replace the corresponding visual commands. Automated virtual microscopy includes so-called microscopy assistants which can be defined similar to the developed assistants in computer based editing systems (Microsoft Word, etc.). These include an automated image standardization and correction algorithms that excludes images of poor quality (for example uni-colored or out-of-focus images), an automated selection of the most appropriate field of view, an automated selection of the best magnification, and finally proposals of the most probable diagnosis. A quality control of the final diagnosis, and feedback to the laboratory determine the proposed system. The already developed tools of such a system are described in detail, as well as the results of first trials. In order to enhance the speed of such a system, and to allow further user-independent development a distributed implementation probably based upon Grid technology seems to be appropriate. The advantages of such a system as well as the present pathology environment and its expectations will be discussed in detail

    Grid computing in image analysis

    Get PDF
    Diagnostic surgical pathology or tissue–based diagnosis still remains the most reliable and specific diagnostic medical procedure. The development of whole slide scanners permits the creation of virtual slides and to work on so-called virtual microscopes. In addition to interactive work on virtual slides approaches have been reported that introduce automated virtual microscopy, which is composed of several tools focusing on quite different tasks. These include evaluation of image quality and image standardization, analysis of potential useful thresholds for object detection and identification (segmentation), dynamic segmentation procedures, adjustable magnification to optimize feature extraction, and texture analysis including image transformation and evaluation of elementary primitives

    Identification of the Inorganic Pyrophosphate Metabolizing, ATP Substituting Pathway in Mammalian Spermatozoa

    Get PDF
    Inorganic pyrophosphate (PPi) is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1) in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF) rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS) and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies

    Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture.</p> <p>Methods</p> <p>Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale <it>in silico </it>image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM).</p> <p>Results</p> <p>We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates.</p> <p>Conclusion</p> <p>The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.</p

    Long-term prognosis of breast cancer detected by mammography screening or other methods

    Get PDF
    Introduction Previous studies on breast cancer have shown that patients whose tumors are detected by mammography screening have a more favorable survival. However, little is known about the long-term prognostic impact of screen-detection. The purpose of the current study was to compare breast cancer-specific long-term survival between patients whose tumors were detected in mammography screening and those detected by other methods. Methods Breast cancer patients diagnosed within five specified geographical areas in Finland in 1991-92 were identified (n=2,936). Detailed clinical, treatment and outcome data as well as tissue samples were collected. Women with in situ carcinoma, distant metastases at the primary diagnosis and women who were not operated were excluded. Main analyses were made with exclusions of patients with other malignancy or contralateral breast cancer followed by to sensitivity analyses with different exclusion criterias. Median follow-up time was 15.4 years. Univariate and multivariate analysis of breast cancer-specific survival were performed. Results Of patients included in the main analyses (n=1,884) 22% (n=408) were screen-detected and 78% (n=1,476) were detected by other methods. Breast cancer-specific 15-year survival was 86% for patients with screen-detected cancer and 66% for patients diagnosed by other methods (p<0.0001, HR=2.91). Similar differences in survival were also observed in women at screening age (50-69 years) as well as in clinically important subgroups, such as patients with small tumors ([less than or equal to]1cm in diameter) and without nodal involvement (N0). Women with breast cancer diagnosed by screening mammography had a more favorable prognosis compared to those diagnosed outside of screening program following adjustments according to patient age, tumor size, axillary lymph node status, histological grade and hormone receptor status. Significant differences in the risk of having future contralateral breast cancer according to method of detection was not observed . Conclusions Breast cancer detection in mammography screening is an independent prognostic factor in breast cancer and is associated with a more favorable survival also in long-term follow-up.BioMed Central open acces
    corecore