184 research outputs found

    Mitochondrial DNA variants in genomic data: diagnostic uplifts and predictive implications

    Get PDF
    A broad spectrum of rare disease presentations can now be investigated by analysing mitochondrial DNA (mtDNA) variants from whole-genome sequencing (WGS) data. However, mtDNA mutations may cause unanticipated, extended phenotypes and have reproductive implications. We recommend that these be considered by patients and clinicians before embarking on WGS

    Familial genetic risks:How can we better navigate patient confidentiality and appropriate risk disclosure to relatives?

    Get PDF
    This article investigates a high-profile and ongoing dilemma for healthcare professionals (HCPs), namely whether the existence of a (legal) duty of care to genetic relatives of a patient is a help or a hindrance in deciding what to do in cases where a patient's genetic information may have relevance to the health of the patient's family members. The English case ABC v St George's Healthcare NHS Trust and others considered if a duty of confidentiality owed to the patient and a putative duty of care to the patient's close relatives could coexist in this context. This article examines whether embracing the concept of coexisting duties could enable HCPs to respect duties in line with their clinical judgement, thereby providing legal support and clarity to professionals to allow them to provide the best possible genetics service to both the patient and their family. We argue that these dual duties, framed as a novel, composite duty to consider the interests of genetic relatives, could allow HCPs to exercise and act on their professional judgements about the relative value of information to family members, without fears of liability for negligence or breach of confidence

    Mixed-methods evaluation of the NHS Genomic Medicine Service for paediatric rare diseases: study protocol [version 1; peer review: awaiting peer review]

    Get PDF
    Background: A new nationally commissioned NHS England Genomic Medicine Service (GMS) was recently established to deliver genomic testing with equity of access for patients affected by rare diseases and cancer. The overarching aim of this research is to evaluate the implementation of the GMS during its early years, identify barriers and enablers to successful implementation, and provide recommendations for practice. The focus will be on the use of genomic testing for paediatric rare diseases. / Methods: This will be a four-year mixed-methods research programme using clinic observations, interviews and surveys. Study 1 consists of qualitative interviews with designers/implementers of the GMS in Year 1 of the research programme, along with documentary analysis to understand the intended outcomes for the Service. These will be revisited in Year 4 to compare intended outcomes with what happened in practice, and to identify barriers and facilitators that were encountered along the way. Study 2 consists of clinic observations (pre-test counselling and results disclosure) to examine the interaction between health professionals and parents, along with follow-up interviews with both after each observation. Study 3 consists of a longitudinal survey with parents at two timepoints (time of testing and 12 months post-results) along with follow-up interviews, to examine parent-reported experiences and outcomes. Study 4 consists of qualitative interviews and a cross-sectional survey with medical specialists to identify preparedness, facilitators and challenges to mainstreaming genomic testing. The use of theory-based and pre-specified constructs will help generalise the findings and enable integration across the various sub-studies. / Dissemination: We will disseminate our results to policymakers as findings emerge, so any suggested changes to service provision can be considered in a timely manner. A workshop with key stakeholders will be held in Year 4 to develop and agree a set of recommendations for practice

    Excluding pulmonary embolism in primary care using the Wells-rule in combination with a point-of care D-dimer test: a scenario analysis

    Get PDF
    ABSTRACT: BACKGROUND: In secondary care the Wells clinical decision rule (CDR) combined with a quantitative D-dimer test can exclude pulmonary embolism (PE) safely. The introduction of point-of-care (POC) D-dimer tests facilitates a similar diagnostic strategy in primary care. We estimated failure-rate and efficiency of a diagnostic strategy using the Wells-CDR combined with a POC-D-dimer test for excluding PE in primary care. We considered ruling out PE safe if the failure rate was <2% with a maximum upper confidence limit of 2.7%. METHODS: We performed a scenario-analysis on data of 2701 outpatients suspected of PE. We used test characteristics of two qualitative POC-D-dimer tests, as derived from a meta-analysis and combined these with the Wells-CDR-score. RESULTS: In scenario 1 (SimpliRed-D-dimer sensitivity 85%, specificity 74%) PE was excluded safely in 23.8% of patients but only by lowering the cut-off value of the Wells rule to <2. (failure rate: 1.4%, 95% CI 0.6-2.6%) In scenario 2 (Simplify-D-dimer sensitivity 87%, specificity 62%) PE was excluded safely in 12.4% of patients provided that the Wells-cut-off value was set at 0. (failure rate: 0.9%, 95% CI 0.2-2.6%) CONCLUSION: Theoretically a diagnostic strategy using the Wells-CDR combined with a qualitative POC-D-dimer test can be used safely to exclude PE in primary care albeit with only moderate efficienc

    Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracts of <it>Hypericum perforatum </it>(St. John's wort) have been traditionally recommended for a wide range of medical conditions, in particular mild-to-moderate depression. The present study was designed to investigate the effect of Hypericum perforatum treatment in a mouse model of anxiety/depressive-like behavior, induced by chronic corticosterone administration.</p> <p>Methods</p> <p>CD1 mice were submitted to 7 weeks corticosterone administration and then behavioral tests as Open Field (OF), Novelty-Suppressed Feeding (NSF), Forced Swim Test (FST) were performed. Cell proliferation in hippocampal dentate gyrus (DG) was investigated by both 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry techniques and stereological procedure was used to quantify labeled cells. Golgi-impregnation method was used to evaluate changes in dendritic spines in DG. Hypericum perforatum (30 mg/Kg) has been administered for 3 weeks and then neural development in the adult hippocampus and behavioral changes have been examined.</p> <p>Results</p> <p>The anxiety/depressive-like state due to chronic corticosterone treatment was reversed by exogenous administration of Hypericum perforatum; the proliferation of progenitor cells in mice hippocampus was significantly reduced under chronic corticosterone treatment, whereas a long term treatment with Hypericum perforatum prevented the corticosterone-induced decrease in hippocampal cell proliferation. Corticosterone-treated mice exhibited a reduced spine density that was ameliorated by Hypericum perforatum administration.</p> <p>Conclusion</p> <p>These results provide evidence of morphological adaptations occurring in mature hippocampal neurons that might underlie resilient responses to chronic stress and contribute to the therapeutic effects of chronic Hypericum perforatum treatment.</p

    Accumulation of intraneuronal Aβ correlates with ApoE4 genotype

    Get PDF
    In contrast to extracellular plaque and intracellular tangle pathology, the presence and relevance of intraneuronal Aβ in Alzheimer’s disease (AD) is still a matter of debate. Human brain tissue offers technical challenges such as post-mortem delay and uneven or prolonged tissue fixation that might affect immunohistochemical staining. In addition, previous studies on intracellular Aβ accumulation in human brain often used antibodies targeting the C-terminus of Aβ and differed strongly in the pretreatments used. To overcome these inconsistencies, we performed extensive parametrical testing using a highly specific N-terminal Aβ antibody detecting the aspartate at position 1, before developing an optimal staining protocol for intraneuronal Aβ detection in paraffin-embedded sections from AD patients. To rule out that this antibody also detects the β-cleaved APP C-terminal fragment (β-CTF, C99) bearing the same epitope, paraffin-sections of transgenic mice overexpressing the C99-fragment were stained without any evidence for cross-reactivity in our staining protocol. The staining intensity of intraneuronal Aβ in cortex and hippocampal tissue of 10 controls and 20 sporadic AD cases was then correlated to patient data including sex, Braak stage, plaque load, and apolipoprotein E (ApoE) genotype. In particular, the presence of one or two ApoE4 alleles strongly correlated with an increased accumulation of intraneuronal Aβ peptides. Given that ApoE4 is a major genetic risk factor for AD and is involved in neuronal cholesterol transport, it is tempting to speculate that perturbed intracellular trafficking is involved in the increased intraneuronal Aβ aggregation in AD

    Association of the CpG Methylation Pattern of the Proximal Insulin Gene Promoter with Type 1 Diabetes

    Get PDF
    The insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10−16) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8–15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r = 0.77) and CpG -135 and -234 (r = 0.65). 70/485 (14%) of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D) who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p = 2.10−6) but increased CpG-234 methylation (p = 5.10−8), the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined

    Tau-dependent suppression of adult neurogenesis in the stressed hippocampus

    Get PDF
    uncorrected proofStress, a well-known sculptor of brain plasticity, is shown to suppress hippocampal neurogenesis in the adult brain; yet, the underlying cellular mechanisms are poorly investigated. Previous studies have shown that chronic stress triggers hyperphosphorylation and accumulation of the cytoskeletal protein Tau, a process that may impair the cytoskeleton-regulating role (s) of this protein with impact on neuronal function. Here, we analyzed the role of Tau on stress-driven suppression of neurogenesis in the adult dentate gyrus (DG) using animals lacking Tau (Tau-knockout; Tau-KO) and wild-type (WT) littermates. Unlike WTs, Tau-KO animals exposed to chronic stress did not exhibit reduction in DG proliferating cells, neuroblasts and newborn neurons; however, newborn astrocytes were similarly decreased in both Tau-KO and WT mice. In addition, chronic stress reduced phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/glycogen synthase kinase-3 beta (GSK3 beta)/beta-catenin signaling, known to regulate cell survival and proliferation, in the DG of WT, but not Tau-KO, animals. These data establish Tau as a critical regulator of the cellular cascades underlying stress deficits on hippocampal neurogenesis in the adult brain.Portuguese Foundation for Science and Technology (FCT) Investigator grants (IF/01799/2013, IF/00883/2013, IF/01079/2014, respectively). This work was funded by FCT research grants 'PTDC/SAU-NMC/113934/2009' (IS), the Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), the Project Estratégico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)info:eu-repo/semantics/publishedVersio

    Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation

    Get PDF
    Prova tipográfica (In Press)An important question arising from previous observations in vivo is whether glucocorticoids can directly influence neuronal survival in the hippocampus. To this end, a primary postnatal hippocampal culture system containing mature neurons and expressing both glucocorticoid (GR) and mineralocorticoid (MR) receptors was developed. Results show that the GR agonist dexamethasone (DEX) targets neurons (microtubule-associated protein 2-positive cells) for death through apoptosis. GR-mediated cell death was counteracted by the MR agonist aldosterone (ALDO). Antagonism of MR with spironolactone ([7a-(acetylthio)-3-oxo-17a-pregn- 4-ene,21 carbolactone] (SPIRO)) causes a dose-dependent increase in neuronal apoptosis in the absence of DEX, indicating that nanomolar levels of corticosterone present in the culture medium, which are sufficient to activate MR, can mask the apoptotic response to DEX. Indeed, both SPIRO and another MR antagonist, oxprenoate potassium ((7a,17a)-17-Hydroxy-3-oxo-7- propylpregn-4-ene-21-carboxylic acid, potassium salt (RU28318)), accentuated DEX-induced apoptosis. These results demonstrate that GRs can act directly to induce hippocampal neuronal death and that demonstration of their full apoptotic potency depends on abolition of survival-promoting actions mediated by MR
    corecore