24,591 research outputs found

    Water temperature dynamics in High Arctic river basins

    No full text
    Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high-resolution water column thermal regimes for glacier-fed and non-glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier-fed rivers (0.3-3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7-2.3 °C km ). Non-glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9-5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p<0.01) with incoming short-wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin-specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high-latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high-latitude river systems

    Evolution of a stream ecosystem in recently deglaciated terrain

    No full text
    Climate change and associated glacial recession create new stream habitat that leads to the assembly of new riverine communities through primary succession. However, there are still very few studies of the patterns and processes of community assembly during primary succession for stream ecosystems. We illustrate the rapidity with which biotic communities can colonize and establish in recently formed streams by examining Stonefly Creek in Glacier Bay, Alaska (USA), which began to emerge from a remnant glacial ice mass between 1976 and 1979. By 2002, 57 macroinvertebrate and 27 microcrustacea species had become established. Within 10 years of the stream's formation, pink salmon and Dolly Varden charr colonized, followed by other fish species, including juvenile red and silver salmon, Coast Range sculpin, and sticklebacks. Stable-isotope analyses indicate that marine-derived nitrogen from the decay of salmon carcasses was substantially assimilated within the aquatic food web by 2004. The findings from Stonefly Creek are compared with those from a long-term study of a similarly formed but older stream (12 km to the northeast) to examine possible similarities in macroinvertebrate community and biological trait composition between streams at similar stages of development. Macroinvertebrate community assembly appears to have been initially strongly deterministic owing to low water temperature associated with remnant ice masses. In contrast, microcrustacean community assembly appears to have been more stochastic. However, as stream age and water temperature increased, macroinvertebrate colonization was also more stochastic, and taxonomic similarity between Stonefly Creek and a stream at the same stage of development was,<50%. However the most abundant taxa were similar, and functional diversity of the two communities was almost identical. Tolerance is suggested as the major mechanism of community assembly. The rapidity with which salmonids and invertebrate communities have become established across an entire watershed has implications for the conservation of biodiversity in freshwater habitats

    Experimental evidence that predator range expansion modifies alpine stream community structure

    Get PDF
    Climate change is projected to facilitate altitudinal range expansions of ‘lowland’ taxa, creating novel species interactions. However, how range shifts will alter biotic interactions and community structure in alpine streams is not well understood. In the Pyrénées, climate-induced physicochemical habitat change is hypothesized to facilitate the colonization of high-altitude streams by Perla grandis, a carnivorous stonefly. A field-based experiment was conducted in mesocosm channels beside a hillslope spring (2000 m asl) in the Taillon-Gabiétous catchment, French Pyrénées. The influence of P. grandis predation on community structure, feeding trait composition, body-size spectrum, and algal chlorophyll a concentration was examined. Gut contents were analyzed and used to identify consumed prey. Total invertebrate density was not significantly reduced by P. grandis, but Baetis spp. densities were depressed in the treatment channels through a combination of direct consumption and predator avoidance (emigration/drift). However, despite fewer grazers in the predator treatment channels, the magnitude of the trophic cascade effect on basal resources (measured as chlorophyll a density) was comparable between treatment and control channels. The results of this experiment suggest that size/species-specific predation, intraguild predation, and interference competition are the likely mechanisms that altered the body-size spectrum in treatment channels. In synergy with climate-driven physicochemical habitat change, the extinction risk of some range-restricted taxa (prey and other predators) could be increased where P. grandis colonization occurs. Hence, conservation efforts are required to ensure that additional anthropogenic stressors (e.g., nutrient enrichment, cattle trampling, hydropower development, ski runs, and tourism) are limited to minimize further pressures on these unique and sensitive habitats

    Diagnostic Validity of Patient-Reported History for Shoulder Pathology

    Get PDF
    Objective The purpose of this article is to determine whether patient-reported history items are predictive of shoulder pathology and have the potential for use in triaging patients with shoulder pathology to orthopaedic outpatient clinics. Setting It is set at two tertiary orthopaedic clinics. Patients All new patients reporting pain and/or disability of the shoulder joint were prospectively recruited. A total of 193 patients were enrolled, 15 of whom withdrew, leaving 178 patients composing the study sample. Design Patients completed a questionnaire on the history of their pathology, then the surgeon took a thorough history indicating the most likely diagnosis. The clinician then performed appropriate physical examination. Arthroscopy was the reference standard for those undergoing surgery and magnetic resonance imaging (MRI) with arthrogram for all others. We calculated the sensitivity, specificity, and likelihood ratios (LRs) of history items alone and in combination. We used the LRs to generate a clinical decision algorithm. Main Outcome Measures Diagnosis was determined through arthroscopy or MRI arthrogram. Reporting was standardized to ensure review of all structures. Results The physical examination and history agreed in 75% of cases. Of those that did not agree, the physical examination misdirected the diagnosis in 47% of our cases. In particular, history items were strong predictors of anterior and posterior instability and subscapularis tears and were combined in a tool to be utilized for screening patients. Conclusion The patient-reported history items were effective for diagnosing shoulder pathology and should be considered for use in a triaging instrument

    Yes, Topology Matters in Decentralized Optimization: Refined Convergence and Topology Learning under Heterogeneous Data

    Full text link
    One of the key challenges in federated and decentralized learning is to design algorithms that efficiently deal with highly heterogeneous data distributions across agents. In this paper, we revisit the analysis of Decentralized Stochastic Gradient Descent algorithm (D-SGD), a popular decentralized learning algorithm, under data heterogeneity. We exhibit the key role played by a new quantity, that we call neighborhood heterogeneity, on the convergence rate of D-SGD. Unlike prior work, neighborhood heterogeneity is measured at the level of the neighborhood of an agent in the graph topology. By coupling the topology and the heterogeneity of the agents' distributions, our analysis sheds light on the poorly understood interplay between these two concepts in decentralized learning. We then argue that neighborhood heterogeneity provides a natural criterion to learn sparse data-dependent topologies that reduce (and can even eliminate) the otherwise detrimental effect of data heterogeneity on the convergence time of D-SGD. For the important case of classification with label skew, we formulate the problem of learning such a good topology as a tractable optimization problem that we solve with a Frank-Wolfe algorithm. Our approach provides a principled way to design a sparse topology that balances the number of iterations and the per-iteration communication costs of D-SGD under data heterogeneity

    Closed-loop all-optical interrogation of neural circuits in vivo

    Get PDF
    Understanding the causal relationship between neural activity and behavior requires the ability to perform rapid and targeted interventions in ongoing activity. Here we describe a closed-loop all-optical strategy for dynamically controlling neuronal activity patterns in awake mice. We rapidly tailored and delivered two-photon optogenetic stimulation based on online readout of activity using simultaneous two-photon imaging, thus enabling the manipulation of neural circuit activity ‘on the fly’ during behavior

    Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts

    Get PDF
    Objectives. The aim of this study was to evaluate the load-bearing capacity and microstrain of incisors restored with posts of various kinds. Both prefabricated titanium posts and different fiber-reinforced composite posts were tested.Methods. The crowns of human incisors were cut and post preparation was carried out. The roots were divided into groups: (1) prefabricated serrated titanium posts, (2) prefabricated carbon fiber-reinforced composite posts, (3) individually formed glass fiber-reinforced composite posts with the canal full of fibers, and (4) individually formed "split" glass fiber-reinforced composite posts. The posts were cemented and composite crowns were made. Intact human incisors were used as reference. All roots were embedded in acrylic resin cylinders and stored at room temperature in water. Static load was applied under a loading angle of 45 degrees using a universal testing machine. On half of the specimens microstrain was measured with strain gages and an acoustic emission analysis was carried out. Failure mode assessment was also made.Results. The group with titanium posts showed highest number of unfavorable failures compared to the groups with fiber-reinforced composite posts. Significance. With fiber-reinforced composite posts the failures may more often be favorable compared to titanium posts, which clinically means repairable failures. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved

    An alternative approach to water regulations for public health protection at bathing beaches

    Get PDF
    This is the final version of the article. Available from Hindawi Publishing Corporation via the DOI in this record.New approaches should be considered as the US Environmental Protection Agency (EPA) moves rapidly to develop new beach monitoring guidelines by the end of 2012, as these guidelines serve as the basis by which states and territories with coasts along the oceans and Great Lakes can then develop and implement monitoring programs for recreational waters. We describe and illustrate one possible approach to beach regulation termed as the "Comprehensive Toolbox within an Approval Process (CTBAP)." The CTBAP consists of three components. The first is a "toolbox" consisting of an inventory of guidelines on monitoring targets, a series of measurement techniques, and guidance to improve water quality through source identification and prevention methods. The second two components are principles of implementation. These include first, "flexibility" to encourage and develop an individualized beach management plan tailored to local conditions and second, "consistency" of this management plan to ensure a consistent national level of public health protection. The results of this approach are illustrated through a case study at a well-studied South Florida recreational marine beach. This case study explores different monitoring targets based on two different health endpoints (skin versus gastrointestinal illness) and recommends a beach regulation program for the study beach that focuses predominately on source prevention.This study was funded in part by the National Science Foundation (NSF) and the National Institute of Environmental Health Sciences (NIEHS) Oceans and Human Health Center at the University of Miami Rosenstiel School (NSF 0CE0432368/0911373) and (NIEHS P50 ES12736); an NSF REU in Oceans and Human Health; and ESF and ERDF Convergence funding to the European Centre for Environment and Human Health (University of Exeter)
    • …
    corecore