128 research outputs found

    A possible role for Phlebotomus (Anaphlebotomus) rodhaini (Parrot, 1930) in transmission of Leishmania donovani

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visceral leishmaniasis (VL, kala azar), caused by <it>Leishmania donovani </it>is a major health problem in Sudan and other East African countries. In this region the only proven vectors of <it>L. donovani </it>are <it>Phlebotomus orientalis </it>in eastern Sudan, Ethiopia and Upper Nile areas of Southern Sudan and <it>Phlebotomus martini </it>in Ethiopia, Kenya and Southern Sudan. In this report, we present the first evidence that <it>Phlebotomus rodhaini </it>may also play a role in maintaining transmission of <it>L. donovani </it>between animal reservoir hosts in eastern Sudan. The study was conducted in a zoonotic focus of visceral leishmaniasis in Dinder National Park, eastern Sudan, where previous work showed high infection rates of <it>L. donovani </it>in <it>P. orientalis</it>. Sand flies, captured by CDC traps were dissected and examined for infection with <it>Leishmania </it>parasites. Parasite isolates were subjected to <it>L. donovani </it>specific PCR. Field experiments were also carried out to compare efficiency of rodent baited and un-baited CDC traps in collection of <it>P. rodhaini </it>and determine its man-biting rate.</p> <p>Results</p> <p>Three female <it>P. rodhain</it>i were found infected with <it>Leishmania </it>parasites in an astonishingly small number of flies captured in three separate field trips. Two of these isolates were typed by molecular methods as <it>L. donovani</it>, while the third isolate was inoculated into a hamster that was subsequently lost. Although <it>P. rodhaini is </it>generally considered a rare species, results obtained in this study indicate that it can readily be captured by rodent-baited traps. Results of human landing collection showed that it rarely bites humans in the area.</p> <p>Conclusion</p> <p>It is concluded that <it>P. rodhaini </it>is a possible vector of <it>L. donovani </it>between animal reservoir hosts but is not responsible for infecting humans. It is suggested that the role of <it>P</it>. <it>rodhaini </it>in transmission of <it>L. donovani </it>in other zoonotic foci of visceral leishmaniasis in Africa should be re-examined.</p

    Quantification of Leishmania infantum DNA in females, eggs and larvae of Rhipicephalus sanguineus

    Get PDF
    <p/> <p>Background</p> <p><it>Leishmania infantum </it>is a widespread parasite that affects dogs and humans worldwide. It is transmitted primarily by phlebotomine sand flies, but recently there has been much discussion on the role of the brown dog tick, <it>Rhipicephalus sanguineus</it>, as a potential vector for this protozoan. Recent laboratory and field investigations have contributed to this hypothesis, but a proof of the vector capacity of <it>R. sanguineus </it>has yet to be provided. Following a recent study suggesting that <it>L. infantum </it>passes transovarially from the female tick to her progeny the current study provides new evidence of the transovarial transmission of <it>L. infantum </it>in <it>R. sanguineus</it>.</p> <p>Methods</p> <p>Engorged females of <it>R. sanguineus </it>were collected from the environment in a dog shelter of southern Italy, where canine leishmaniosis is endemic. In the laboratory, 97 females that successfully laid eggs, their eggs and the originated larvae were subjected to DNA extraction and then tested by a TaqMan-based real time PCR targeting a fragment of the kinetoplast DNA (kDNA) of <it>L. infantum</it>.</p> <p>Results and conclusions</p> <p><it>L. infantum </it>kDNA was detected in engorged females, their eggs and originating larvae, with a parasite load ranging from 1.8 × 10<sup>-4 </sup>to 10.0 × 10<sup>0</sup>. Certainly, the current study provides further evidence on the passage of <it>L. infantum </it>from <it>R. sanguineus </it>females to their offspring. The observation of promastigote forms in larvae is necessary to definitively confirm this hypothesis, which would raise interesting questions about the possible role of ticks in the maintenance of <it>L. infantum </it>infection among dogs in certain areas.</p

    Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development

    Get PDF
    Light microscopy of native preparations, histology, and electron microscopy have revealed that Phlebotomus duboscqi belongs to a class of sand fly species with prompt development of the peritrophic matrix (PM). Secretion of electron-lucent fibrils, presumably chitin, starts immediately after the ingestion of a blood meal and, about 6 h later, is followed by secretion of amorphous electron-dense components, presumably proteins and glycoproteins. The PM matures in less than 12 h and consists of a thin laminar outer layer and a thick amorphous inner layer. No differences have been found in the timing of the disintegration of the PM in females infected with Leishmania major. In both groups of females (infected and uninfected), the disintegration of the PM is initiated at the posterior end. Although parasites are present at high densities in the anterior part of the blood meal bolus, they escape from the PM at the posterior end only. These results suggest that L. major chitinase does not have an important role in parasite escape from the PM. Promastigotes remain in the intraperitrophic space until the PM is broken down by sand-fly-derived chitinases and only then migrate anteriorly. Disintegration of the PM occurs simultaneously with the morphological transformation of parasites from procyclic forms to long nectomonads. A novel role is ascribed to the anterior plug, a component of the PM secreted by the thoracic midgut; this plug functions as a temporary barrier to stop the forward migration of nectomonads to the thoracic midgut

    Ecology of Phlebotomine Sand Flies in the Rural Community of Mont Rolland (Thiès Region, Senegal): Area of Transmission of Canine Leishmaniasis

    Get PDF
    BACKGROUND: Different epidemiological studies previously indicated that canine leishmaniasis is present in the region of Thiès (Senegal). However, the risks to human health, the transmission cycle and particularly the implicated vectors are unknown. METHODOLOGY/PRINCIPAL FINDINGS: To improve our knowledge on the population of phlebotomine sand flies and the potential vectors of canine leishmaniasis, sand flies were collected using sticky traps, light traps and indoor spraying method using pyrethroid insecticides in 16 villages of the rural community of Mont Rolland (Thiès region) between March and July 2005. The 3788 phlebotomine sand flies we collected (2044 males, 1744 females) were distributed among 9 species of which 2 belonged to the genus Phlebotomus: P. duboscqi (vector of cutaneous leishmaniasis in Senegal) and P. rodhaini. The other species belonged to the genus Sergentomyia: S. adleri, S. clydei, S. antennata, S. buxtoni, S. dubia, S. schwetzi and S. magna. The number of individuals and the species composition differed according to the type of trap, suggesting variable, species-related degrees of endophily or exophily. The two species of the genus Phlebotomus were markedly under-represented in comparison to the species of the genus Sergentomyia. This study also shows a heterogeneous spatial distribution within the rural community that could be explained by the different ecosystems and particularly the soil characteristics of this community. Finally, the presence of the S. dubia species appeared to be significantly associated with canine leishmaniasis seroprevalence in dogs. CONCLUSIONS/SIGNIFICANCE: Our data allow us to hypothesize that the species of the genus Sergentomyia and particularly the species S. dubia and S. schwetzi might be capable of transmitting canine leishmaniasis. These results challenge the dogma that leishmaniasis is exclusively transmitted by species of the genus Phlebotomus in the Old World. This hypothesis should be more thoroughly evaluated

    Longer sleep is associated with lower BMI and favorable metabolic profiles in UK adults: Findings from the National Diet and Nutrition Survey

    Get PDF
    Ever more evidence associates short sleep with increased risk of metabolic diseases such as obesity, which may be related to a predisposition to non-homeostatic eating. Few studies have concurrently determined associations between sleep duration and objective measures of metabolic health as well as sleep duration and diet, however. We therefore analyzed associations between sleep duration, diet and metabolic health markers in UK adults, assessing associations between sleep duration and 1) adiposity, 2) selected metabolic health markers and 3) diet, using National Diet and Nutrition Survey data. Adults (n = 1,615, age 19–65 years, 57.1% female) completed questions about sleep duration and 3 to 4 days of food diaries. Blood pressure and waist circumference were recorded. Fasting blood lipids, glucose, glycated haemoglobin (HbA1c), thyroid hormones, and high-sensitivity C-reactive protein (CRP) were measured in a subset of participants. We used regression analyses to explore associations between sleep duration and outcomes. After adjustment for age, ethnicity, sex, smoking, and socioeconomic status, sleep duration was negatively associated with body mass index (-0.46 kg/m2 per hour, 95% CI -0.69 to -0.24 kg/m2, p < 0.001) and waist circumference (-0.9 cm per hour, 95% CI -1.5 to -0.3cm, p = 0.004), and positively associated with high-density lipoprotein cholesterol (0.03 mmol/L per hour, 95% CI 0.00 to 0.05, p = 0.03). Sleep duration tended to be positively associated with free thyroxine levels and negatively associated with HbA1c and CRP (p = 0.09 to 0.10). Contrary to our hypothesis, sleep duration was not associated with any dietary measures (p ≥ 0.14). Together, our findings show that short-sleeping UK adults are more likely to have obesity, a disease with many comorbidities

    Characterization of simple sequence repeats (SSRs) from Phlebotomus papatasi (Diptera: Psychodidae) expressed sequence tags (ESTs)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phlebotomus papatasi </it>is a natural vector of <it>Leishmania major</it>, which causes cutaneous leishmaniasis in many countries. Simple sequence repeats (SSRs), or microsatellites, are common in eukaryotic genomes and are short, repeated nucleotide sequence elements arrayed in tandem and flanked by non-repetitive regions. The enrichment methods used previously for finding new microsatellite loci in sand flies remain laborious and time consuming; <it>in silico </it>mining, which includes retrieval and screening of microsatellites from large amounts of sequence data from sequence data bases using microsatellite search tools can yield many new candidate markers.</p> <p>Results</p> <p>Simple sequence repeats (SSRs) were characterized in <it>P. papatasi </it>expressed sequence tags (ESTs) derived from a public database, National Center for Biotechnology Information (NCBI). A total of 42,784 sequences were mined, and 1,499 SSRs were identified with a frequency of 3.5% and an average density of 15.55 kb per SSR. Dinucleotide motifs were the most common SSRs, accounting for 67% followed by tri-, tetra-, and penta-nucleotide repeats, accounting for 31.1%, 1.5%, and 0.1%, respectively. The length of microsatellites varied from 5 to 16 repeats. Dinucleotide types; AG and CT have the highest frequency. Dinucleotide SSR-ESTs are relatively biased toward an excess of (AX)n repeats and a low GC base content. Forty primer pairs were designed based on motif lengths for further experimental validation.</p> <p>Conclusion</p> <p>The first large-scale survey of SSRs derived from <it>P. papatasi </it>is presented; dinucleotide SSRs identified are more frequent than other types. EST data mining is an effective strategy to identify functional microsatellites in <it>P. papatasi</it>.</p

    The molecular detection of different Leishmania species within sand flies from a cutaneous and visceral leishmaniasis sympatric area in Southeastern Brazil

    Full text link
    Over the last 20 years, there has been an increase in the number of leishmaniasis cases in Brazil. Belo Horizonte (BH) is one of the most highly populated Brazilian cities that is affected by visceral leishmaniasis (VL). The health services in BH are coordinated by a central nucleus that is subdivided into nine sanitary districts. Historically, the highest level of human VL cases was found in the northeast sanitary district (NSD). The objective of our study was to detect Leishmania infection in the phlebotomine sand flies collected in the NSD by dissection and molecular approaches. Following the occurrence of human VL cases in 2005, entomological captures were performed from July 2006-June 2007. Out of the 245 sand flies dissected, only three Lutzomyia longipalpis spp contained flagellates. The female sand flies were grouped into 120 pools according to date, collection site and species, with approximately 10 individual sand flies in each pool. Subsquently, the DNA was extracted and Leishmania spp and other parasites were detected and identified by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorfism. Leishmania infantum was present in at least 19% of the Lu. longipalpis collected, in 3.8% of the Nyssomiya whitmani collected, in 33.3% of the Evandromiya termitophila collected and in 14.3% of the Nyssomiya intermedia collected. When the females of the cortelezzii complex were compared with each other, 3.2% of the females were infected with Leishmania braziliensis, whereas 3.2% of the females were infected with trypanosomatids
    corecore