27 research outputs found

    Search for residual prostate cancer on pT0 radical prostatectomy after positive biopsy

    Get PDF
    Reported incidence of no residual prostate cancer (i.e. pathological stage pT0) on radical prostatectomy ranges from 0.07 to 4.2%. The incidence is higher after neoadjuvant endocrine treatment. The aim of this study was to search for residual cancer on radical prostatectomy (RP) specimens when an initial sampling failed to find the cancer in patients with positive biopsy. Our database of 1,328 consecutive patients whose biopsies and RP specimen were both examined at the Polytechnic University-United Hospitals of the Marche Region between March 1995 and June 2006 was reviewed. The radical prostatectomies were grossly completely sampled and examined with the whole mount technique. We identified eight patients (i.e. 0.6%; three untreated and five hormonally treated preoperatively, i.e. 0.3 and 0.8%, respectively, of the total number of RPs included in the study) with positive biopsy and with no residual cancer in the initial routine histological examination of the RP. The RP of this group of eight was subjected to additional sectioning and evaluation of the paraffin blocks of the prostatectomy, also after block-flipping, immunostaining with an antibody against CAM 5.2, p63, PSA, and alpha-methylacyl-CoA racemase, and DNA specimen identity analysis. There were no cases with a false positive biopsy diagnosis, and cancer was not overlooked or missed in the initial routine histological examination of any of the 8 pT0 RPs. A minute focus of cancer (the diameter was always below 2.0 mm) was found on the additional sections in five. In particular, cancer was found after block-flipping in one of them. In an additional case, cancer was eventually discovered after immunostaining tissue sections for cytokeratin CAM 5.2, for p63 and PSA. In the remaining two cases (one untreated and the other hormonally treated), cancer was not found (0.15% of the 1,328 RPs included in the study); the review of the description of the macroscopic appearance of the RP and of its slides revealed that part of the peripheral zone corresponding to the site of the positive biopsy was missing, i.e. not removed from the patient at the time of the operation at least in one of the two. DNA specimen analysis confirmed the identity of the biopsy and prostatectomy in both. An extensive search for residual cancer reduces the number of pT0 RPs after a positive biopsy from 0.6 to 0.15%. It is recommended to have the needle biopsy reviewed, carefully look again at the radical prostatectomy, do deeper sections and then flip certain paraffin blocks. In addition, atypical foci should be stained for basal cell markers and often AMACR, especially in hormone-treated cases. If a block is missing part of the peripheral zone (capsular incision), this should be commented on. DNA analysis for tissue identity should be performed when the other steps have been taken without finding cancer

    A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data

    Get PDF
    Background: A polygenic hazard score (PHS), the weighted sum of 54 SNP genotypes, was previously validated for association with clinically significant prostate cancer and for improved prostate cancer screening accuracy. Here, we assess the potential impact of PHS-informed screening. / Methods: United Kingdom population incidence data (Cancer Research United Kingdom) and data from the Cluster Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific clinically significant prostate cancer incidence (Gleason score ≥7, stage T3–T4, PSA ≥10, or nodal/distant metastases). Using HRs estimated from the ProtecT prostate cancer trial, age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent age, when someone with a given PHS percentile has prostate cancer risk equivalent to an average 50-year-old man (50-year-standard risk), was derived from PHS and incidence data. Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was calculated using PHS-adjusted age groups. / Results: The expected age at diagnosis of clinically significant prostate cancer differs by 19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles reach the 50-year-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher for men with higher PHS-adjusted age. / Conclusions: PHS provides individualized estimates of risk-equivalent age for clinically significant prostate cancer. Screening initiation could be adjusted by a man's PHS. / Impact: Personalized genetic risk assessments could inform prostate cancer screening decisions

    A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    Get PDF

    Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts

    Get PDF
    Objectives To develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age. Design Analysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score ≥7, stage T3-T4, PSA (prostate specific antigen) concentration ≥10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa. Setting Multiple institutions that were members of international PRACTICAL consortium. Participants All consortium participants of European ancestry with known age, PCa status, and quality assured custom (iCOGS) array genotype data. The development dataset comprised 31 747 men; the validation dataset comprised 6411 men. Main outcome measures Prediction with hazard score of age of onset of aggressive cancer in validation set. Results In the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z=11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P=0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score. Conclusions Polygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa

    Cavity field tomography via atomic beam deflection

    No full text
    We propose a set-up where a classical field interacts via a two-level atom with a quantized field in a resonator. Due to entanglement we can reconstruct all available information about the field by measuring the momentum distribution of the atom.</p

    Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts

    No full text
    Objectives: To develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age. Design: Analysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score ≥7, stage T3-T4, PSA (prostate specific antigen) concentration ≥10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa. Results: In the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z=11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P=0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score. Conclusions: Polygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa
    corecore