192 research outputs found

    Simulation of impulse response for indoor visible light communications using 3D CAD models

    Get PDF
    n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    What makes health impact assessments successful? Factors contributing to effectiveness in Australia and New Zealand

    Get PDF
    Background: While many guidelines explain how to conduct Health Impact Assessments (HIAs), less is known about the factors that determine the extent to which HIAs affect health considerations in the decision making process. We investigated which factors are associated with increased or reduced effectiveness of HIAs in changing decisions and in the implementation of policies, programs or projects. This study builds on and tests the Harris and Harris-Roxas' conceptual framework for evaluating HIA effectiveness, which emphasises context, process and output as key domains. Methods: We reviewed 55 HIA reports in Australia and New Zealand from 2005 to 2009 and conducted surveys and interviews for 48 of these HIAs. Eleven detailed case studies were undertaken using document review and stakeholder interviews. Case study participants were selected through purposeful and snowball sampling. The data were analysed by thematic content analysis. Findings were synthesised and mapped against the conceptual framework. A stakeholder forum was utilised to test face validity and practical adequacy of the findings. Results: We found that some features of HIA are essential, such as the stepwise but flexible process, and evidence based approach. Non-essential features that can enhance the impact of HIAs include capacity and experience; 'right person right level'; involvement of decision-makers and communities; and relationships and partnerships. There are contextual factors outside of HIA such as fit with planning and decision making context, broader global context and unanticipated events, and shared values and goals that may influence a HIA. Crosscutting factors include proactive positioning, and time and timeliness. These all operate within complex open systems, involving multiple decision-makers, levels of decision-making, and points of influence. The Harris and Harris-Roxas framework was generally supported. Conclusion: We have confirmed previously identified factors influencing effectiveness of HIA and identified new factors such as proactive positioning. Our findings challenge some presumptions about 'right' timing for HIA and the rationality and linearity of decision-making processes. The influence of right timing on decision making needs to be seen within the context of other factors such as proactive positioning. This research can help HIA practitioners and researchers understand and identify what can be enhanced within the HIA process. Practitioners can adapt the flexible HIA process to accommodate the external contextual factors identified in this report

    Fast 3D shape screening of large chemical databases through alignment-recycling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large chemical databases require fast, efficient, and simple ways of looking for similar structures. Although such tasks are now fairly well resolved for graph-based similarity queries, they remain an issue for 3D approaches, particularly for those based on 3D shape overlays. Inspired by a recent technique developed to compare molecular shapes, we designed a hybrid methodology, alignment-recycling, that enables efficient retrieval and alignment of structures with similar 3D shapes.</p> <p>Results</p> <p>Using a dataset of more than one million PubChem compounds of limited size (< 28 heavy atoms) and flexibility (< 6 rotatable bonds), we obtained a set of a few thousand diverse structures covering entirely the 3D shape space of the conformers of the dataset. Transformation matrices gathered from the overlays between these diverse structures and the 3D conformer dataset allowed us to drastically (100-fold) reduce the CPU time required for shape overlay. The alignment-recycling heuristic produces results consistent with <it>de novo </it>alignment calculation, with better than 80% hit list overlap on average.</p> <p>Conclusion</p> <p>Overlay-based 3D methods are computationally demanding when searching large databases. Alignment-recycling reduces the CPU time to perform shape similarity searches by breaking the alignment problem into three steps: selection of diverse shapes to describe the database shape-space; overlay of the database conformers to the diverse shapes; and non-optimized overlay of query and database conformers using common reference shapes. The precomputation, required by the first two steps, is a significant cost of the method; however, once performed, querying is two orders of magnitude faster. Extensions and variations of this methodology, for example, to handle more flexible and larger small-molecules are discussed.</p

    Quantitative electron phase imaging with high sensitivity and an unlimited field of view

    Get PDF
    As it passes through a sample, an electron beam scatters, producing an exit wavefront rich in information. A range of material properties, from electric and magnetic field strengths to specimen thickness, strain maps and mean inner potentials, can be extrapolated from its phase and mapped at the nanoscale. Unfortunately, the phase signal is not straightforward to obtain. It is most commonly measured using off-axis electron holography, but this is experimentally challenging, places constraints on the sample and has a limited field of view. Here we report an alternative method that avoids these limitations and is easily implemented on an unmodified transmission electron microscope (TEM) operating in the familiar selected area diffraction mode. We use ptychography, an imaging technique popular amongst the X-ray microscopy community; recent advances in reconstruction algorithms now reveal its potential as a tool for highly sensitive, quantitative electron phase imaging

    Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructures

    Get PDF
    Two-dimensional semiconductors - atomic layers of materials with covalent intra-layer bonding and weak (van der Waals or quadrupole) coupling between the layers - are a new class of materials with great potential for optoelectronic applications. Among those, a special position is now being taken by post-transition metal chalcogenides (PTMC), InSe and GaSe. It has recently been found that the band gap in 2D crystals of InSe more than doubles in the monolayer compared to thick multilayer crystals, while the high mobility of conduction band electrons is promoted by their light in-plane mass. Here, we use Raman and PL measurements of encapsulated few layer samples, coupled with accurate atomic force and transmission electron microscope structural characterisation to reveal new optical properties of atomically thin GaSe preserved by hBN encapsulation. The band gaps we observe complement the spectral range provided by InSe films, so that optical activity of these two almost lattice-matched PTMC films and their heterostructures densely cover the spectrum of photons from violet to infrared. We demonstrate the realisation of the latter by the first observation of interlayer excitonic photoluminescence in few-layer InSe-GaSe heterostructures. The spatially indirect transition is direct in k-space and therefore is bright, while its energy can be tuned in a broad range by the number of layers.Comment: 8 pages 4 figure

    Exploring the views of infection consultants in England on a novel delinked funding model for antimicrobials: the SMASH study

    Get PDF
    OBJECTIVES: A novel 'subscription-type' funding model was launched in England in July 2022 for ceftazidime/avibactam and cefiderocol. We explored the views of infection consultants on important aspects of the delinked antimicrobial funding model. METHODS: An online survey was sent to all infection consultants in NHS acute hospitals in England. RESULTS: The response rate was 31.2% (235/753). Most consultants agreed the model is a welcome development (69.8%, 164/235), will improve treatment of drug-resistant infections (68.5%, 161/235) and will stimulate research and development of new antimicrobials (57.9%, 136/235). Consultants disagreed that the model would lead to reduced carbapenem use and reported increased use of cefiderocol post-implementation. The presence of an antimicrobial pharmacy team, requirement for preauthorization by infection specialists, antimicrobial stewardship ward rounds and education of infection specialists were considered the most effective antimicrobial stewardship interventions. Under the new model, 42.1% (99/235) of consultants would use these antimicrobials empirically, if risk factors for antimicrobial resistance were present (previous infection, colonization, treatment failure with carbapenems, ward outbreak, recent admission to a high-prevalence setting).Significantly higher insurance and diversity values were given to model antimicrobials compared with established treatments for carbapenem-resistant infections, while meropenem recorded the highest enablement value. Use of both 'subscription-type' model drugs for a wide range of infection sites was reported. Respondents prioritized ceftazidime/avibactam for infections by bacteria producing OXA-48 and KPC and cefiderocol for those producing MBLs and infections with Stenotrophomonas maltophilia, Acinetobacter spp. and Burkholderia cepacia. CONCLUSIONS: The 'subscription-type' model was viewed favourably by infection consultants in England

    The Brecon Beacons

    Get PDF
    The Brecon Beacons of central and southern Wales offer the opportunity to explore a range of geomorphological processes, particularly those relating to the rapid climate changes associated with the period subsequent to the Last Glacial Maximum. The mountains present some of the best preserved evidence in the British Isles of the interplay between glacial, periglacial and paraglacial processes, associated with conditions of marginal glaciation, and provide the most southerly evidence of Younger Dryas/Loch Lomond Stadial glaciation of Britain. The absence of evidence for landscape evolution in the region prior to the Last Glacial Maximum has recently begun to be addressed through insights derived from the subterranean geomorphology of limestone found in the south of the region. As one of the key sites of the early Industrial Revolution, the Brecon Beacons also preserve a unique landscape of anthropogenic (or even anthropocenic) geomorphology associated with large scale coal and iron extraction

    Dendritic cell density and activation status in human breast cancer – CD1a, CMRF-44, CMRF-56 and CD-83 expression

    Get PDF
    Low CD1a-positive putative dendritic cell numbers in human breast cancer has recently been described and may explain the apparent ‘poor immunogenicity’ previously reported in breast cancer. Little attention has been given to dendritic cell activation within the tumour microenvironment, which is another reason why the in-situ immune response may be severely deficient. We have therefore examined CD1a expression as a marker for dendritic cells, together with CMRF-44 and -56 as markers of dendritic cell activation status, in 40 human breast cancers. The results demonstrate few or no CD1a-positive putative dendritic cells and minimal or no expression of the dendritic cell activation markers. Both dendritic cell number and dendritic cell activation appear substantially deficient in human breast cancers, regardless of tumour histological grade
    corecore