167 research outputs found

    Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    Get PDF
    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele

    Renal Function and Risk Factors of Moderate to Severe Chronic Kidney Disease in Golestan Province, Northeast of Iran

    Get PDF
    Introduction: The incidence of end-stage renal disease is increasing worldwide. Earlier studies reported high prevalence rates of obesity and hypertension, two major risk factors of chronic kidney disease (CKD), in Golestan Province, Iran. We aimed to investigate prevalence of moderate to severe CKD and its risk factors in the region. Methods: Questionnaire data and blood samples were collected from 3591 participants (≥18 years old) from the general population. Based on serum creatinine levels, glomerular filtration rate (GFR) was estimated. Results: High body mass index (BMI) was common: 35.0 of participants were overweight (BMI 25-29.9) and 24.5 were obese (BMI ≥30). Prevalence of CKD stages 3 to 5 (CKD-S3-5), i.e., GFR <60 mL/min/1.73 m2, was 4.6. The odds ratio (OR) and 95 confidence interval (95 CI) for the risk of CKD-S3-5 associated with every year increase in age was 1.13 (1.11- 1.15). Men were at lower risk of CKD-S3-5 than women (OR = 0.28; 95 CI 0.18-0.45). Obesity (OR = 1.78; 95 CI 1.04-3.05) and self-reported diabetes (OR = 1.70; 95 CI 1.00-2.86), hypertension (OR = 3.16; 95 CI 2.02-4.95), ischemic heart disease (OR = 2.73; 95 CI 1.55-4.81), and myocardial infarction (OR = 2.69; 95 CI 1.14-6.32) were associated with increased risk of CKD-S3-5 in the models adjusted for age and sex. The association persisted for self-reported hypertension even after adjustments for BMI and history of diabetes (OR = 2.85; 95 CI 1.77-4.59). Conclusion: A considerable proportion of inhabitants in Golestan have CKD-S3-5. Screening of individuals with major risk factors of CKD, in order to early detection and treatment of impaired renal function, may be plausible. Further studies on optimal risk prediction of future end-stage renal disease and effectiveness of any screening program are warranted. © 2010 Najafi et al

    Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity

    Get PDF
    International audienceSilica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: 1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol (PEG) molecules, 2) positively charged silica nanoparticles coated with amine groups and 3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 hours with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production and oxidative stress. Results showed that the highly positive charged nanoparticle, were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticles types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity

    From Structure Prediction to Genomic Screens for Novel Non-Coding RNAs

    Get PDF
    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other

    Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles

    Get PDF
    Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size

    Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease

    Get PDF

    Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    Full text link
    corecore