2,579 research outputs found

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Nonlinear Sigma Model for Disordered Media: Replica Trick for Non-Perturbative Results and Interactions

    Full text link
    In these lectures, given at the NATO ASI at Windsor (2001), applications of the replicas nonlinear sigma model to disordered systems are reviewed. A particular attention is given to two sets of issues. First, obtaining non-perturbative results in the replica limit is discussed, using as examples (i) an oscillatory behaviour of the two-level correlation function and (ii) long-tail asymptotes of different mesoscopic distributions. Second, a new variant of the sigma model for interacting electrons in disordered normal and superconducting systems is presented, with demonstrating how to reduce it, under certain controlled approximations, to known ``phase-only'' actions, including that of the ``dirty bosons'' model.Comment: 25 pages, Proceedings of the NATO ASI "Field Theory of Strongly Correlated Fermions and Bosons in Low - Dimensional Disordered Systems", Windsor, August, 2001; to be published by Kluwe

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Phase-slip induced dissipation in an atomic Bose-Hubbard system

    Full text link
    Phase slips play a primary role in dissipation across a wide spectrum of bosonic systems, from determining the critical velocity of superfluid helium to generating resistance in thin superconducting wires. This subject has also inspired much technological interest, largely motivated by applications involving nanoscale superconducting circuit elements, e.g., standards based on quantum phase-slip junctions. While phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors. In solids, problems such as uncontrolled noise sources and disorder complicate the study and application of phase slips. Here we show that phase slips can lead to dissipation for a clean and well-characterized Bose-Hubbard (BH) system by experimentally studying transport using ultra-cold atoms trapped in an optical lattice. In contrast to previous work, we explore a low velocity regime described by the 3D BH model which is not affected by instabilities, and we measure the effect of temperature on the dissipation strength. We show that the damping rate of atomic motion-the analogue of electrical resistance in a solid-in the confining parabolic potential fits well to a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, while at higher temperatures a cross-over consistent with the transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging.Comment: published in Nature 453, 76 (2008

    Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    Get PDF
    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA

    Brain structural changes and neuropsychological impairments in male polydipsic schizophrenia

    Get PDF
    BACKGROUND: Polydipsia frequently occurs in schizophrenia patients. The excessive water loading in polydipsia occasionally induces a hyponatremic state and leads to water intoxication. Whether polydipsia in schizophrenic patients correlates with neuropsychological impairments or structural brain changes is not clear and remains controversial. METHODS: Eight polydipsic schizophrenia patients, eight nonpolydipsic schizophrenia patients, and eight healthy controls were recruited. All subjects underwent magnetic resonance imaging (MRI) and neuropsychological testing. Structural abnormalities were analyzed using a voxel-based morphometry (VBM) approach, and patients’ neuropsychological function was assessed using the Brief Assessment of Cognition in Schizophrenia, Japanese version (BACS-J). RESULTS: No significant differences were found between the two patient groups with respect to the clinical characteristics. Compared with healthy controls, polydipsic patients showed widespread brain volume reduction and neuropsychological impairment. Furthermore, the left insula was significantly reduced in polydipsic patients compared with nonpolydipsic patients. These nonpolydipsic patients performed intermediate to the other two groups in the neuropsychological function test. CONCLUSIONS: It is possible that polydipsia or the secondary hyponatremia might induce left insula volume reduction. Furthermore, this structural brain change may indirectly induce more severe neuropsychological impairments in polydipsic patients. Thus, we suggest that insula abnormalities might contribute to the pathophysiology of polydipsic patients

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page
    corecore