340 research outputs found

    Is sirolimus a therapeutic option for patients with progressive pulmonary lymphangioleiomyomatosis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphangioleiomyomatosis (LAM) is a rare lung disease characterised by progressive airflow obstruction. No effective medical treatment is available but therapy with sirolimus has shown some promise. The aim of this observational study was to evaluate sirolimus in progressive LAM.</p> <p>Methods</p> <p>Sirolimus (trough level 5 - 10 ng/ml) was administered to ten female patients (42.4 Β± 11.9 years) with documented progression. Serial pulmonary function tests and six-minute-walk-distance (6-MWD) assessments were performed.</p> <p>Results</p> <p>The mean loss of FEV<sub>1 </sub>was -2.30 Β± 0.52 ml/day before therapy and a significant mean gain of FEV<sub>1 </sub>of 1.19 Β± 0.26 ml/day was detected during treatment (p = 0.001). Mean FEV<sub>1 </sub>and FVC at baseline were 1.12 Β± 0.15 l (36.1 Β± 4.5%pred.) and 2.47 Β± 0.25 l (69.2 Β± 6.5%pred.), respectively. At three and six months during follow-up a significant increase of FEV<sub>1 </sub>and FVC was demonstrated (3 months Ξ”FEV<sub>1</sub>: 220 Β± 82 ml, p = 0.024; 6 months Ξ”FEV<sub>1</sub>: 345 Β± 58 ml, p = 0.001); (3 months Ξ”FVC: 360 Β± 141 ml, p = 0.031; 6 months Ξ”FVC: 488 Β± 138 ml, p = 0.006). Sirolimus was discontinued in 3 patients because of serious recurrent lower respiratory tract infection or sirolimus-induced pneumonitis. No deaths and no pneumothoraces occurred during therapy.</p> <p>Conclusions</p> <p>Our data suggest that sirolimus might be considered as a therapeutic option in rapidly declining LAM patients. However, sirolimus administration may be associated with severe respiratory adverse events requiring treatment cessation in some patients. Moreover, discontinuation of sirolimus is mandatory prior to lung transplantation.</p

    Lymphangioleiomyoma

    Get PDF
    Review on Lymphangioleiomyoma, with data on clinics, and the genes involved

    Geometrical anisotropy dependence of thermal diffusivity in lyotropic nematics: Mode mismatched thermal lens measurements

    Get PDF
    In this work the quantitative theoretical treatment for two beam mode mismatched thermal lens spectrometry is applied to investigate the thermal diffusivity anisotropy of two lyotropic mixtures: (1) potassium laurate, decanol and water and (2) potassium laurate, potassium chloride and water in the nematic calamitic phase. The ratio between the thermal diffusivities parallel and perpendicular to the director has been shown to be smaller than those reported for thermotropic liquid crystal. This observation is explained by using a simple model where this ratio is correlated to the micellar shape anisotropy. (C) 1996 American Institute of Physics.68243371337

    Colocalized Structural and Functional Changes in the Cortex of Patients with Trigeminal Neuropathic Pain

    Get PDF
    Background: Recent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness) and functional (blood oxygenation dependent level – BOLD) changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP) affecting the right maxillary (V2) division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy. Methodology/Principal Findings: Cortical regions were chosen based on sensory (Somatosensory cortex (SI and SII), motor (MI) and posterior insula), or emotional (DLPFC, Frontal, Anterior Insula, Cingulate) processing of pain. Both structural and functional (to brush-induced allodynia) scans were obtained and averaged from two different imaging sessions separated by 2–6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions. Conclusions: Overall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions

    Who Needs Microtubules? Myogenic Reorganization of MTOC, Golgi Complex and ER Exit Sites Persists Despite Lack of Normal Microtubule Tracks

    Get PDF
    A wave of structural reorganization involving centrosomes, microtubules, Golgi complex and ER exit sites takes place early during skeletal muscle differentiation and completely remodels the secretory pathway. The mechanism of these changes and their functional implications are still poorly understood, in large part because all changes occur seemingly simultaneously. In an effort to uncouple the reorganizations, we have used taxol, nocodazole, and the specific GSK3-Ξ² inhibitor DW12, to disrupt the dynamic microtubule network of differentiating cultures of the mouse skeletal muscle cell line C2. Despite strong effects on microtubules, cell shape and cell fusion, none of the treatments prevented early differentiation. Redistribution of centrosomal proteins, conditional on differentiation, was in fact increased by taxol and nocodazole and normal in DW12. Redistributions of Golgi complex and ER exit sites were incomplete but remained tightly linked under all circumstances, and conditional on centrosomal reorganization. We were therefore able to uncouple microtubule reorganization from the other events and to determine that centrosomal proteins lead the reorganization hierarchy. In addition, we have gained new insight into structural and functional aspects of the reorganization of microtubule nucleation during myogenesis

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10βˆ’7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10βˆ’6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10βˆ’8 M Ang II or 10βˆ’8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10βˆ’7 M A779. 10βˆ’6 M dibutyryl-cAMP increased the level of infection and 10βˆ’7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    A Chemical Analog of Curcumin as an Improved Inhibitor of Amyloid Abeta Oligomerization

    Get PDF
    Amyloid-like plaques are characteristic lesions defining the neuropathology of Alzheimer's disease (AD). The size and density of these plaques are closely associated with cognitive decline. To combat this disease, the few therapies that are available rely on drugs that increase neurotransmission; however, this approach has had limited success as it has simply slowed an imminent decline and failed to target the root cause of AD. Amyloid-like deposits result from aggregation of the AΞ² peptide, and thus, reducing amyloid burden by preventing AΞ² aggregation represents an attractive approach to improve the therapeutic arsenal for AD. Recent studies have shown that the natural product curcumin is capable of crossing the blood-brain barrier in the CNS in sufficient quantities so as to reduce amyloid plaque burden. Based upon this bioactivity, we hypothesized that curcumin presents molecular features that make it an excellent lead compound for the development of more effective inhibitors of AΞ² aggregation. To explore this hypothesis, we screened a library of curcumin analogs and identified structural features that contribute to the anti-oligomerization activity of curcumin and its analogs. First, at least one enone group in the spacer between aryl rings is necessary for measureable anti-AΞ² aggregation activity. Second, an unsaturated carbon spacer between aryl rings is essential for inhibitory activity, as none of the saturated carbon spacers showed any margin of improvement over that of native curcumin. Third, methoxyl and hydroxyl substitutions in the meta- and para-positions on the aryl rings appear necessary for some measure of improved inhibitory activity. The best lead inhibitors have either their meta- and para-substituted methoxyl and hydroxyl groups reversed from that of curcumin or methoxyl or hydroxyl groups placed in both positions. The simple substitution of the para-hydroxy group on curcumin with a methoxy substitution improved inhibitor function by 6-7-fold over that measured for curcumin

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10βˆ’7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10βˆ’6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10βˆ’8 M Ang II or 10βˆ’8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10βˆ’7 M A779. 10βˆ’6 M dibutyryl-cAMP increased the level of infection and 10βˆ’7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    Regulation of Progranulin Expression in Human Microglia and Proteolysis of Progranulin by Matrix Metalloproteinase-12 (MMP-12)

    Get PDF
    Background: The essential role of progranulin (PGRN) as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia. Goal: In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12), as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI), in human CNS cells. Methods: Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC), Th1 cytokines (IL-1/IFNc), or Th2 cytokines (IL-4, IL-13). Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined. Results: Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNc, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation

    Multicenter Phase 2 Trial of Sirolimus for Tuberous Sclerosis: Kidney Angiomyolipomas and Other Tumors Regress and VEGF- D Levels Decrease

    Get PDF
    Tuberous sclerosis (TSC) related tumors are characterized by constitutively activated mTOR signaling due to mutations in TSC1 or TSC2.We completed a phase 2 multicenter trial to evaluate the efficacy and tolerability of the mTOR inhibitor, sirolimus, for the treatment of kidney angiomyolipomas.36 adults with TSC or TSC/LAM were enrolled and started on daily sirolimus. The overall response rate was 44.4% (95% confidence intervals [CI] 28 to 61); 16/36 had a partial response. The remainder had stable disease (47.2%, 17/36), or were unevaluable (8.3%, 3/36). The mean decrease in kidney tumor size (sum of the longest diameters [sum LD]) was 29.9% (95% CI, 22 to 37; nβ€Š=β€Š28 at week 52). Drug related grade 1-2 toxicities that occurred with a frequency of >20% included: stomatitis, hypertriglyceridemia, hypercholesterolemia, bone marrow suppression (anemia, mild neutropenia, leucopenia), proteinuria, and joint pain. There were three drug related grade 3 events: lymphopenia, headache, weight gain. Kidney angiomyolipomas regrew when sirolimus was discontinued but responses tended to persist if treatment was continued after week 52. We observed regression of brain tumors (SEGAs) in 7/11 cases (26% mean decrease in diameter), regression of liver angiomyolipomas in 4/5 cases (32.1% mean decrease in longest diameter), subjective improvement in facial angiofibromas in 57%, and stable lung function in women with TSC/LAM (nβ€Š=β€Š15). A correlative biomarker study showed that serum VEGF-D levels are elevated at baseline, decrease with sirolimus treatment, and correlate with kidney angiomyolipoma size (Spearman correlation coefficient 0.54, pβ€Š=β€Š0.001, at baseline).Sirolimus treatment for 52 weeks induced regression of kidney angiomyolipomas, SEGAs, and liver angiomyolipomas. Serum VEGF-D may be a useful biomarker for monitoring kidney angiomyolipoma size. Future studies are needed to determine benefits and risks of longer duration treatment in adults and children with TSC.Clinicaltrials.gov NCT00126672
    • …
    corecore