18 research outputs found
Investigation of Non-Stable Processes in Close Binary Ry Scuti
We present results of reanalysis of old electrophotometric data of early type
close binary system RY Scuti obtained at the Abastumani Astrophysical
Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory,
Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY
Sct from period to period, from month to month and from year to year. This
variation consists from the hundredths up to the tenths of a magnitude.
Furthermore, periodical changes in the system's light are displayed near the
first maximum on timescales of a few years. That is of great interest with
regard to some similar variations seen in luminous blue variable (LBV) stars.
This also could be closely related to the question of why RY Sct ejected its
nebula.Comment: 11 pages, 6 figures, 2 table
Accretion Disc Theory: From the Standard Model Until Advection
Accretion disc theory was first developed as a theory with the local heat
balance, where the whole energy produced by a viscous heating was emitted to
the sides of the disc. One of the most important new invention of this theory
was a phenomenological treatment of the turbulent viscosity, known as ''alpha''
prescription, when the (r) component of the stress tensor was
approximated by ( P) with a unknown constant . This
prescription played the role in the accretion disc theory as well important as
the mixing-length theory of convection for stellar evolution. Sources of
turbulence in the accretion disc are discussed, including nonlinear
hydrodynamical turbulence, convection and magnetic field role. In parallel to
the optically thick geometrically thin accretion disc models, a new branch of
the optically thin accretion disc models was discovered, with a larger
thickness for the same total luminosity. The choice between these solutions
should be done of the base of a stability analysis. The ideas underlying the
necessity to include advection into the accretion disc theory are presented and
first models with advection are reviewed. The present status of the solution
for a low-luminous optically thin accretion disc model with advection is
discussed and the limits for an advection dominated accretion flows (ADAF)
imposed by the presence of magnetic field are analysed.Comment: Roceeding of the Int. Workshop "Observational Evidence for Black
Holes in the Universe". Calcutta, 11-17 January 1998. Kluwer Acad. Pu
Very high energy particle acceleration powered by the jets of the microquasar SS 433
SS 433 is a binary system containing a supergiant star that is overflowing
its Roche lobe with matter accreting onto a compact object (either a black hole
or neutron star). Two jets of ionized matter with a bulk velocity of
extend from the binary, perpendicular to the line of sight, and
terminate inside W50, a supernova remnant that is being distorted by the jets.
SS 433 differs from other microquasars in that the accretion is believed to be
super-Eddington, and the luminosity of the system is erg
s. The lobes of W50 in which the jets terminate, about 40 pc from the
central source, are expected to accelerate charged particles, and indeed radio
and X-ray emission consistent with electron synchrotron emission in a magnetic
field have been observed. At higher energies (>100 GeV), the particle fluxes of
rays from X-ray hotspots around SS 433 have been reported as flux
upper limits. In this energy regime, it has been unclear whether the emission
is dominated by electrons that are interacting with photons from the cosmic
microwave background through inverse-Compton scattering or by protons
interacting with the ambient gas. Here we report TeV -ray observations
of the SS 433/W50 system where the lobes are spatially resolved. The TeV
emission is localized to structures in the lobes, far from the center of the
system where the jets are formed. We have measured photon energies of at least
25 TeV, and these are certainly not Doppler boosted, because of the viewing
geometry. We conclude that the emission from radio to TeV energies is
consistent with a single population of electrons with energies extending to at
least hundreds of TeV in a magnetic field of ~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K.
Fang, C.D. Rho , H. Zhang, H. Zho
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
The Effect of Particulate Air Pollution on Emergency Admissions for Myocardial Infarction: A Multicity Case-Crossover Analysis
Recently, attention has focused on whether particulate air pollution is a specific trigger of myocardial infarction (MI). The results of several studies of single locations assessing the effects of ambient particular matter on the risk of MI have been disparate. We used a multicity case-crossover study to examine risk of emergency hospitalization associated with fine particulate matter (PM) with aerodynamic diameter < 10 μm (PM(10)) for > 300,000 MIs during 1985–1999 among elderly residents of 21 U.S. cities. We used time-stratified controls matched on day of the week or on temperature to detect possible residual confounding by weather. Overall, we found a 0.65% [95% confidence interval (CI), 0.3–1.0%] increased risk of hospitalization for MI per 10 μg/m(3) increase in ambient PM(10) concentration. Matching on apparent temperature yielded a 0.64% increase in risk (95% CI, 0.1–1.2%). We found that the effect size for PM(10) doubled for subjects with a previous admission for chronic obstructive pulmonary disease or a secondary diagnosis of pneumonia, although these differences did not achieve statistical significance. There was a weaker indication of a larger effect on males but no evidence of effect modification by age or the other diagnoses. We also found that the shape of the exposure–response relationship between MI hospitalizations and PM(10) is almost linear, but with a steeper slope at levels of PM(10) < 50 μg/m(3). We conclude that increased concentrations of ambient PM(10) are associated with increased risk of MI among the elderly
