35 research outputs found

    APC/C-Mediated Degradation of dsRNA-Binding Protein 4 (DRB4) Involved in RNA Silencing

    Get PDF
    Background: Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome) is a master ubiquitin protein ligase (E3) that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. Methodology/Principal Findings: In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA). This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2) of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed

    Zen meditation, Length of Telomeres, and the Role of Experiential Avoidance and Compassion

    Get PDF
    Mindfulness refers to an awareness that emerges by intentionally focusing on the present experience in a nonjudgmental or evaluative manner. Evidence regarding its efficacy has been increasing exponentially, and recent research suggests that the practice of meditation is associated with longer leukocyte telomere length. However, the psychological mechanisms underlying this potential relationship are unknown. We examined the telomere lengths of a group of 20 Zen meditation experts and another 20 healthy matched comparison participants who had not previously meditated. We also measured multiple psychological variables related to meditation practice. Genomic DNA was extracted for telomere measurement using a Life Length proprietary program. High-throughput quantitative fluorescence in situ hybridization (HT-Q-FISH) was used to measure the telomere length distribution and the median telomere length (MTL). The meditators group had a longer MTL (p = 0.005) and a lower percentage of short telomeres in individual cells (p = 0.007) than those in the comparison group. To determine which of the psychological variables contributed more to telomere maintenance, two regression analyses were conducted. In the first model, which applied to the MTL, the following three factors were significant: age, absence of experiential avoidance, and Common Humanity subscale of the Self Compassion Scale. Similarly, in the model that examined the percentage of short telomeres, the same factors were significant: age, absence of experiential avoidance, and Common Humanity subscale of the Self Compassion Scale. Although limited by a small sample size, these results suggest that the absence of experiential avoidance of negative emotions and thoughts is integral to the connection between meditation and telomeres
    corecore